ﻻ يوجد ملخص باللغة العربية
We introduce a stochastic analysis of Grassmann random variables suitable for the stochastic quantization of Euclidean fermionic quantum field theories. Analysis on Grassmann algebras is developed here from the point of view of quantum probability: a Grassmann random variable is an homomorphism of an abstract Grassmann algebra into a quantum probability space, i.e. a $C^{ast}$-algebra endowed with a suitable state. We define the notion of Gaussian processes, Brownian motion and stochastic (partial) differential equations taking values in Grassmann algebras. We use them to study the long time behavior of finite and infinite dimensional Langevin Grassmann stochastic differential equations driven by Gaussian space-time white noise and to describe their invariant measures. As an application we give a proof of the stochastic quantization and of the removal of the space cut-off for the Euclidean Yukawa model, indicating also how this method can be extended to other models of quantum fields.
We study a class of elliptic SPDEs with additive Gaussian noise on $mathbb{R}^2 times M$, with $M$ a $d$-dimensional manifold equipped with a positive Radon measure, and a real-valued non linearity given by the derivative of a smooth potential $V$, c
(Due to the limit on the number of characters for an abstract set by arXiv, the full abstract can not be displayed here. See the abstract in the paper.) We study the construction of the $Phi^3_3$-measure and complete the program on the (non-)construc
The (elliptic) stochastic quantization equation for the (massive) $cosh(beta varphi)_2$ model, for the charged parameter in the $L^2$ regime (i.e. $beta^2 < 4 pi$), is studied. We prove the existence, uniqueness and the properties of the invariant me
We study stochastic perturbations of ODE with stable limit cycles -- referred to as stochastic oscillators -- and investigate the response of the asymptotic (in time) frequency of oscillations to changing noise amplitude. Unlike previous studies, we
We study a nonlinear stochastic heat equation forced by a space-time white noise on closed surfaces, with nonlinearity $e^{beta u}$. This equation corresponds to the stochastic quantization of the Liouville quantum gravity (LQG) measure. (i) We first