ﻻ يوجد ملخص باللغة العربية
The problem of quantum state discrimination between two wave functions of a particle in a square well potential is considered. The optimal minimum-error probability for the state discrimination is known to be given by the Helstrom bound. A new strategy is introduced here whereby the square well is compressed isoenergetically, modifying the wave-functions. The new contracted chamber is then probed using the conventional optimal strategy, and the error probability is calculated. It is shown that in some cases the Helstrom bound can be violated, i.e. the state discrimination can be realized with a smaller error probability.
The problem of quantum state discrimination between two wave functions of a particle in a square well potential is considered. The optimal minimum-error probability is known to be given by the Helstrom bound. A new strategy is introduced by inserting
The problem of quantum state discrimination between two wave functions on a ring is considered. The optimal minimum-error probability is known to be given by the Helstrom bound. A new strategy is introduced by inserting either adiabatically or instan
We show how the separability problem is dual to that of decomposing any given matrix into a conic combination of rank-one partial isometries, thus offering a duality approach different to the positive maps characterization problem. Several inmediate
State discrimination with the aim to minimize the error probability is a well studied problem. Instead, here the binary decision problem for operators with a given prior is investigated. A black box containing the unknown operator is probed by select
The drawbacks in the formulations of random infinite divisibility in Sandhya (1991, 1996), Gnedenko and Korelev (1996), Klebanov and Rachev (1996), Bunge (1996) and Kozubowski and Panorska (1996) are pointed out. For any given Laplace transform, we c