ﻻ يوجد ملخص باللغة العربية
The drawbacks in the formulations of random infinite divisibility in Sandhya (1991, 1996), Gnedenko and Korelev (1996), Klebanov and Rachev (1996), Bunge (1996) and Kozubowski and Panorska (1996) are pointed out. For any given Laplace transform, we conceive random (N) infinite divisibility w.r.t a class of probability generating functions derived from the Laplace transform itself. This formulation overcomes the said drawbacks, and the class of probability generating functions is useful in transfer theorems for sums and maximums in general. Generalizing the concepts of attraction (and partial attraction) in the classical and the geometric summation setup to our formulation we show that the domains of attraction (and partial attraction)in all these setups are same. We also establish a necessary and sufficient condition for the convergence to infinitely divisible laws from that of an N-sum and conversely, that is an analogue of Theorem.4.6.5 in Gnedenko and Korelev (1996, p.149). The role of the divisibiltiy of N and the Laplace transform on that of this formulation is also discussed.
In stochastic geometry there are several instances of threshold phenomena in high dimensions: the behavior of a limit of some expectation changes abruptly when some parameter passes through a critical value. This note continues the investigation of t
A classical result for the simple symmetric random walk with $2n$ steps is that the number of steps above the origin, the time of the last visit to the origin, and the time of the maximum height all have exactly the same distribution and converge whe
We investigate the tail behaviour of the steady state distribution of a stochastic recursion that generalises Lindleys recursion. This recursion arises in queuing systems with dependent interarrival and service times, and includes alternating service
In this paper we obtain the limit distribution for partial sums with a random number of terms following a class of mixed Poisson distributions. The resulting weak limit is a mixing between a normal distribution and an exponential family, which we cal
An urn contains black and red balls. Let $Z_n$ be the proportion of black balls at time $n$ and $0leq L<Uleq 1$ random barriers. At each time $n$, a ball $b_n$ is drawn. If $b_n$ is black and $Z_{n-1}<U$, then $b_n$ is replaced together with a random