ترغب بنشر مسار تعليمي؟ اضغط هنا

The innocuousness of adiabatic instabilities in coupled scalar field-dark matter models

161   0   0.0 ( 0 )
 نشر من قبل Pier Stefano Corasaniti
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Non-minimally coupled scalar field models suffer of unstable growing modes at the linear perturbation level. The nature of these instabilities depends on the dynamical state of the scalar field. In particular in systems which admit adiabatic solutions, large scale instabilities are suppressed by the slow-roll dynamics of the field. Here we review these results and present a preliminary likelihood data analysis suggesting that along adiabatic solutions coupled models with coupling of order of gravitational strength can provide viable cosmological scenarios satisfying constraints from SN Ia, CMB and large scale structure data.



قيم البحث

اقرأ أيضاً

We study the evolution of linear density perturbations in the context of interacting scalar field-dark matter cosmologies, where the presence of the coupling acts as a stabilization mechanism for the runaway behavior of the scalar self-interaction po tential as in the case of the Chameleon model. We show that in the adiabatic background regime of the system the rise of unstable growing modes of the perturbations is suppressed by the slow-roll dynamics of the field. Furthermore the coupled system behaves as an inhomogeneous adiabatic fluid. In contrast instabilities may develop for large values of the coupling constant, or along non-adiabatic solutions, characterized by a period of high-frequency dumped oscillations of the scalar field. In the latter case the dynamical instabilities of the field fluctuations, which are typical of oscillatory scalar field regimes, are amplified and transmitted by the coupling to dark matter perturbations.
We consider theories in which there exists a nontrivial coupling between the dark matter sector and the sector responsible for the acceleration of the universe. Such theories can possess an adiabatic regime in which the quintessence field always sits at the minimum of its effective potential, which is set by the local dark matter density. We show that if the coupling strength is much larger than gravitational, then the adiabatic regime is always subject to an instability. The instability, which can also be thought of as a type of Jeans instability, is characterized by a negative sound speed squared of an effective coupled dark matter/dark energy fluid, and results in the exponential growth of small scale modes. We discuss the role of the instability in specific coupled CDM and Mass Varying Neutrino (MaVaN) models of dark energy, and clarify for these theories the regimes in which the instability can be evaded due to non-adiabaticity or weak coupling.
We present three distinct types of models of dark energy in the form of a scalar field which is explicitly coupled to dark matter. Our construction draws from the pull-back formalism for fluids and generalises the fluid action to involve couplings to the scalar field. We investigate the cosmology of each class of model both at the background and linearly perturbed level. We choose a potential for the scalar field and a specific coupling function for each class of models and we compute the Cosmic Microwave Background and matter power spectra.
103 - L. Lopez Honorez , 0. Mena 2009
Coupled dark matter-dark energy systems can suffer from non-adiabatic instabilities at early times and large scales. In these proceedings, we consider two parameterizations of the dark sector interaction. In the first one the energy-momentum transfer 4-vector is parallel to the dark matter 4-velocity and in the second one to the dark energy 4-velocity. In these cases, coupled models which suffer from non-adiabatic instabilities can be identified as a function of a generic coupling Q and of the dark energy equation of state. In our analysis, we do not refer to any particular cosmic field. We confront then a viable class of models in which the interaction is directly proportional to the dark energy density and to the Hubble rate parameter to recent cosmological data. In that framework, we show that correlations between the dark coupling and several cosmological parameters allow for a larger neutrino mass than in uncoupled models.
107 - Tommi Tenkanen 2019
Dark matter (DM) may have its origin in a pre-Big Bang epoch, the cosmic inflation. Here, we consider for the first time a broad class of scenarios where a massive free scalar field unavoidably reaches an equilibrium between its classical and quantum dynamics in a characteristic time scale during inflation and sources the DM density. The study gives the abundance and perturbation spectrum of any DM component sourced by the scalar field. We show that this class of scenarios generically predicts enhanced structure formation, allowing one to test models where DM interacts with matter only gravitationally.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا