ﻻ يوجد ملخص باللغة العربية
We consider theories in which there exists a nontrivial coupling between the dark matter sector and the sector responsible for the acceleration of the universe. Such theories can possess an adiabatic regime in which the quintessence field always sits at the minimum of its effective potential, which is set by the local dark matter density. We show that if the coupling strength is much larger than gravitational, then the adiabatic regime is always subject to an instability. The instability, which can also be thought of as a type of Jeans instability, is characterized by a negative sound speed squared of an effective coupled dark matter/dark energy fluid, and results in the exponential growth of small scale modes. We discuss the role of the instability in specific coupled CDM and Mass Varying Neutrino (MaVaN) models of dark energy, and clarify for these theories the regimes in which the instability can be evaded due to non-adiabaticity or weak coupling.
We present three distinct types of models of dark energy in the form of a scalar field which is explicitly coupled to dark matter. Our construction draws from the pull-back formalism for fluids and generalises the fluid action to involve couplings to
It has been recently pointed out that coupled dark matter-dark energy systems suffer from non-adiabatic instabilities at early times and large scales. We show how coupled models free from non-adiabatic instabilities can be identified as a function of
Non-minimally coupled scalar field models suffer of unstable growing modes at the linear perturbation level. The nature of these instabilities depends on the dynamical state of the scalar field. In particular in systems which admit adiabatic solution
We study the evolution of linear density perturbations in the context of interacting scalar field-dark matter cosmologies, where the presence of the coupling acts as a stabilization mechanism for the runaway behavior of the scalar self-interaction po
We evaluate the mass function of virialized halos, by using Press & Schechter (PS) and/or Steth & Tormen (ST) expressions, for cosmologies where Dark Energy (DE) is due to a scalar self-interacting field, coupled with Dark Matter (DM). We keep to cou