ترغب بنشر مسار تعليمي؟ اضغط هنا

Recent GRBs observed with the 1.23m CAHA telescope and the status of its upgrade

139   0   0.0 ( 0 )
 نشر من قبل Javier Gorosabel
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Javier Gorosabel




اسأل ChatGPT حول البحث

We report on optical observations of Gamma-Ray Bursts (GRBs) followed up by our collaboration with the 1.23m telescope located at the Calar Alto observatory. The 1.23m telescope is an old facility, currently undergoing upgrades to enable fully autonomous response to GRB alerts. We discuss the current status of the control system upgrade of the 1.23m telescope. The upgrade is being done by the ARAE our group, based on members of IAA (Instituto de Astrofiisica de Andalucia). Currently the ARAE group is responsible to develop the BOOTES network of robotic telescopes based on the Remote Telescope System, 2nd Version (RTS2), which controls the available instruments and interacts with the EPICS database of Calar Alto. Currently the telescope can run fully autonomously or under observer supervision using RTS2. The fast reaction response mode for GRB reaction (typically with response times below 3 minutes from the GRB onset) still needs some development and testing. The telescope is usually operated in legacy interactive mode, with periods of supervised autonomous runs under RTS2. We show the preliminary results of several GRBs followed up with observer intervention during the testing phase of the 1.23m control software upgrade.



قيم البحث

اقرأ أيضاً

174 - D. B. Kieda 2011
The VERITAS gamma ray observatory (Amado, AZ, veritas.sao.arizona.edu) uses the Imaging Atmospheric Cherenkov Technique (IACT) to study sources of Very High Energy (VHE: E > 100 GeV) gamma rays. Key science results from the first three years of obser vation include the discovery of the first VHE emitting starburst galaxy, detection of new Active Galactic Nuclei (AGN), SuperNova Remnants (SNR), gamma ray binaries as well as strong limits on the emission of VHE gamma rays from dark matter annihilation in dwarf galaxies. In April 2010, VERITAS received funding to upgrade the photomultiplier tube cameras, pattern triggers, and networking systems in order to improve detector sensitivity, especially near detection threshold (E ~ 100 GeV). In this paper we describe the status of the VERITAS upgrade and the expected improvements in sensitivity when it is completed in summer 2012.
110 - Juergen Baehr 2012
We present here the status of the medium size prototype for the Cherenkov Telescope Array. The main reasons to build the prototype are the test of the steel structure, the training of various mounting operations, the test of the drive system and the test of the safety system. The essential difference between the medium size telescope prototype and a fully instrumented are that the camera is not instrumented and only a part of the mounted mirrors are optical mirrors. Insofar no high energy gamma rays can be detected by the prototype telescope. The prototype will be setup in autumn 2012 in Berlin.
The Cherenkov Telescope Array (CTA) is the next-generation atmospheric Cherenkov gamma-ray observatory. CTA will consist of two installations, one in the northern, and the other in the southern hemisphere, containing tens of telescopes of different s izes. The CTA performance requirements and the inherent complexity associated with the operation, control and monitoring of such a large distributed multi-telescope array leads to new challenges in the field of the gamma-ray astronomy. The ACTL (array control and data acquisition) system will consist of the hardware and software that is necessary to control and monitor the CTA arrays, as well as to time-stamp, read-out, filter and store -at aggregated rates of few GB/s- the scientific data. The ACTL system must be flexible enough to permit the simultaneous automatic operation of multiple sub-arrays of telescopes with a minimum personnel effort on site. One of the challenges of the system is to provide a reliable integration of the control of a large and heterogeneous set of devices. Moreover, the system is required to be ready to adapt the observation schedule, on timescales of a few tens of seconds, to account for changing environmental conditions or to prioritize incoming scientific alerts from time-critical transient phenomena such as gamma ray bursts. This contribution provides a summary of the main design choices and plans for building the ACTL system.
The JEM-EUSO mission aims to explore the origin of the extreme energy cosmic rays (EECRs) through the observation of air-shower fluorescence light from space. The superwide-field telescope looks down from the International Space Station onto the nigh t sky to detect UV photons (fluorescence and Cherenkov photons) emitted from air showers. Such a space detector offers the remarkable opportunity to observe a huge volume of atmosphere at once and will achieve an unprecedented statistics within a few years of operation. Several test experiments are currently in operation: e.g., one to observe the fluorescence background from the edge of the Atmosphere (EUSO-Balloon), or another to demonstrate on ground the capability of detecting air showers with a EUSO-type telescope (EUSO-TA). In this contribution a short review on the scientific objectives of the mission and an update of the instrument definition, performances and status, as well as status of the test experiments will be given.
109 - A. Nepomuk Otte 2009
The VERITAS Cherenkov telescope array has been fully operational since Fall 2007 and has fulfilled or outperformed its design specifications. We are preparing an upgrade program with the goal to lower the energy threshold and improve the sensitivity of VERITAS at all accessible energies. In the baseline program of the upgrade we will relocate one of the four telescopes, replace the photo-sensors by higher efficiency photomultipliers and install a new trigger system. In the enhanced program of the upgrade we foresee, in addition, the construction of a fifth telescope and installation of an active mirror alignment system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا