ترغب بنشر مسار تعليمي؟ اضغط هنا

Physics Goals and Status of JEM-EUSO and its Test Experiments

102   0   0.0 ( 0 )
 نشر من قبل Andreas Haungs
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The JEM-EUSO mission aims to explore the origin of the extreme energy cosmic rays (EECRs) through the observation of air-shower fluorescence light from space. The superwide-field telescope looks down from the International Space Station onto the night sky to detect UV photons (fluorescence and Cherenkov photons) emitted from air showers. Such a space detector offers the remarkable opportunity to observe a huge volume of atmosphere at once and will achieve an unprecedented statistics within a few years of operation. Several test experiments are currently in operation: e.g., one to observe the fluorescence background from the edge of the Atmosphere (EUSO-Balloon), or another to demonstrate on ground the capability of detecting air showers with a EUSO-type telescope (EUSO-TA). In this contribution a short review on the scientific objectives of the mission and an update of the instrument definition, performances and status, as well as status of the test experiments will be given.



قيم البحث

اقرأ أيضاً

This document contains a summary of the workshop which took place on 22 - 24 February 2012 at the Kavli Institute of Cosmological Physics in the University of Chicago. The goal of the workshop was to discuss the physics reach of the JEM-EUSO mission and how best to implement a global ground based calibration system for the instrument to realize the physics goal of unveiling the origin of the highest energy cosmic rays.
The TurLab facility is a laboratory, equipped with a 5 m diameter and 1 m depth rotating tank, located in the Physics Department of the University of Turin. Originally, it was mainly built to study systems of different scales where rotation plays a k ey role in the fluid behavior such as in atmospheric and oceanic flows. In the past few years the TurLab facility has been used to perform experiments related to the observation of Extreme Energy Cosmic Rays (EECRs) from space using the fluorescence technique. For example, in the case of the JEM-EUSO mission, where the diffuse night brightness and artificial light sources can vary significantly in time and space inside the Field of View of the telescope. The Focal Surface of Mini-EUSO Engineering Model (Mini-EUSO EM) with the level 1 (L1) and 2 (L2) trigger logics implemented in the Photo-Detector Module (PDM) has been tested at TurLab. Tests related to the possibility of using an EUSO-like detector for other type of applications such as Space Debris (SD) monitoring and imaging detector have also been pursued. The tests and results obtained within the EUSO@TurLab Project on these different topics are presented.
Mini-EUSO (Extreme Universe Space Observatory) is a small-scale prototype cosmic-ray detector that will measure Earth`s UV emission and other atmospheric phenomena from space. It will be placed in the International Space Station (ISS) behind a UV-tra nsparent window looking to the nadir. The launch is planned this year (2019). Consisting of a multi-anode photomultiplier (MAPMT) camera and a $25$ cm diameter Fresnel lens system, Mini-EUSO has a ang{44} field of view (FoV), a $6.5$ km$^2$ spatial resolution on the ground and a $2.5 mu$s temporal resolution. In principle, Mini-EUSO will be sensitive to extensive air shower (EAS) from cosmic-rays with energies above $10^{21}$ eV. A mobile, steerable UV laser system will be used to test the expected energy threshold and performance of Mini-EUSO. The laser system will be driven to remote locations in the Western US and aimed across the field of view of Mini-EUSO when the ISS passes overhead during dark nights. It will emit pulsed $355$ nm UV laser light to produce a short speed-of-light track in the detector. The brightness of this track will be similar to the track from an EAS resulting from a cosmic-ray of up to $10^{21}$ eV. The laser energy is selectable with a maximum of around $90$ mJ per pulse. The energy calibration factor is stable within $5 % $. The characteristics of the laser system and Mini-EUSO have been implemented inside the JEM-EUSO OffLine software framework, and laser simulation studies are ongoing to determine the best way to perform a field measurement.
The Japanese Experiment Module (JEM) Extreme Universe Space Observatory (EUSO) will be launched and attached to the Japanese module of the International Space Station (ISS). Its aim is to observe UV photon tracks produced by ultra-high energy cosmic rays developing in the atmosphere and producing extensive air showers. The key element of the instrument is a very wide-field, very fast, large-lense telescope that can detect extreme energy particles with energy above $10^{19}$ eV. The Atmospheric Monitoring System (AMS), comprising, among others, the Infrared Camera (IRCAM), which is the Spanish contribution, plays a fundamental role in the understanding of the atmospheric conditions in the Field of View (FoV) of the telescope. It is used to detect the temperature of clouds and to obtain the cloud coverage and cloud top altitude during the observation period of the JEM-EUSO main instrument. SENER is responsible for the preliminary design of the Front End Electronics (FEE) of the Infrared Camera, based on an uncooled microbolometer, and the manufacturing and verification of the prototype model. This paper describes the flight design drivers and key factors to achieve the target features, namely, detector biasing with electrical noise better than $100 mu$V from $1$ Hz to $10$ MHz, temperature control of the microbolometer, from $10^{circ}$C to $40^{circ}$C with stability better than $10$ mK over $4.8$ hours, low noise high bandwidth amplifier adaptation of the microbolometer output to differential input before analog to digital conversion, housekeeping generation, microbolometer control, and image accumulation for noise reduction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا