ترغب بنشر مسار تعليمي؟ اضغط هنا

An ion-implanted silicon single-electron transistor

253   0   0.0 ( 0 )
 نشر من قبل Victor Chan
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the fabrication and electrical characterization at millikelvin temperatures of a novel silicon single-electron transistor (Si-SET). The island and source-drain leads of the Si-SET are formed by the implantation of phosphorus ions to a density above the metal-insulator-transition, with the tunnel junctions created by undoped regions. Surface gates above each of the tunnel junctions independently control the tunnel coupling between the Si-SET island and leads. The device shows periodic Coulomb blockade with a charging energy e$^2$/2C$_Sigma$ $sim$ 250 $mu$eV, and demonstrates a reproducible and controllable pathway to a silicon-based SET using CMOS processing techniques.



قيم البحث

اقرأ أيضاً

We investigate a hybrid structure consisting of $20pm4$ implanted $^{31}$P atoms close to a gate-induced silicon single electron transistor (SiSET). In this configuration, the SiSET is extremely sensitive to the charge state of the nearby centers, tu rning from the off state to the conducting state when the charge configuration is changed. We present a method to measure fast electron tunnel rates between donors and the SiSET island, using a pulsed voltage scheme and low-bandwidth current detection. The experimental findings are quantitatively discussed using a rate equation model, enabling the extraction of the capture and emission rates.
We examine a silicon-germanium heterojunction bipolar transistor (HBT) for cryogenic pre-amplification of a single electron transistor (SET). The SET current modulates the base current of the HBT directly. The HBT-SET circuit is immersed in liquid he lium, and its frequency response from low frequency to several MHz is measured. The current gain and the noise spectrum with the HBT result in a signal-to-noise-ratio (SNR) that is a factor of 10-100 larger than without the HBT at lower frequencies. The transition frequency defined by SNR = 1 has been extended by as much as a factor of 10 compared to without the HBT amplification. The power dissipated by the HBT cryogenic pre-amplifier is approximately 5 nW to 5 {mu}W for the investigated range of operation. The circuit is also operated in a single electron charge read-out configuration in the time-domain as a proof-of-principle demonstration of the amplification approach for single spin read-out.
110 - S.A. Gurvitz , G.P. Berman 2004
We investigate qubit measurements using a single electron transistor (SET). Applying the Schrodinger equation to the entire system we find that an asymmetric SET is considerably more efficient than a symmetric SET. The asymmetric SET becomes close to an ideal detector in the large asymmetry limit. We also compared the SET detector with a point-contact detector. This comparison allows us to illuminate the relation between information gain in the measurement process and the decoherence generated by these measurement devices.
We investigate a silicon single-electron transistor (SET) in a metal-oxide-semiconductor (MOS) structure by applying a magnetic field perpendicular to the sample surface. The quantum dot is defined electrostatically in a point contact channel and by the potential barriers from negatively charged interface traps. The magnetic field dependence of the excitation spectrum is primarily driven by the Zeeman effect. In the two-electron singlet-triplet (ST) transition, electron-electron Coulomb interaction plays a significant role. The evolution of Coulomb blockade peaks with magnetic field B is also owing to the Zeeman splitting with no obvious orbital effect up to 9 T. The filling pattern shows an alternate spin-up-spin-down sequence. The amplitude spectroscopy allows for the observation of the spin blockade effect, where the two-electron system forms a singlet state at low fields, and the spin polarized injection from the lead reduces the tunneling conductance by a factor of 8. At a higher magnetic field, due to the ST transition, the spin blockade effect is lifted and the conductance is fully recovered.
We present a realisation of high bandwidth instrumentation at cryogenic temperatures and for dilution refrigerator operation that possesses advantages over methods using radio-frequency single electron transistor or transimpedance amplifiers. The abi lity for the low temperature electronics to carry out faster measurements than with room temperature electronics is investigated by the use of a phosphorous-doped single-electron transistor. A single-shot technique is successfully implemented and used to observe the real time decay of a quantum state. A discussion on various measurement strategies is presented and the consequences on electron heating and noise are analysed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا