ﻻ يوجد ملخص باللغة العربية
Heavy-light meson system is investigated using the relativistic heavy quark action on the 2+1 dynamical flavor PACS-CS configurations at the lattice spacing $a^{-1}=2.2$ GeV and the spatial extent L=3 fm. Dynamical up-down and strange quark masses as well as the valence charm quark mass are set around their physical values. We measure the charm-$ud$ and charm-strange meson masses and decay constants. Our results are consistent with the experimental values except the hyperfine splitting of the charm-strange meson. We also estimate the CKM matrix elements in the second row.
We present the results of the physical point simulation in 2+1 flavor lattice QCD with the nonperturbatively $O(a)$-improved Wilson quark action and the Iwasaki gauge action at $beta=1.9$ on a $32^3 times 64$ lattice. The physical quark masses toge
We perform a lattice QCD study of the $rho$ meson decay from the $N_f=2+1$ full QCD configurations generated with a renormalization group improved gauge action and a non-perturbatively $O(a)$-improved Wilson fermion action. The resonance parameters,
We present results for neutral D-meson mixing in 2+1-flavor lattice QCD. We compute the matrix elements for all five operators that contribute to D mixing at short distances, including those that only arise beyond the Standard Model. Our results have
Using the axial-vector coupling and the electromagnetic form factors of the D and D* mesons in 2+1 flavor Lattice QCD, we compute the D*Dpi, DDrho and D*D*rho coupling constants, which play an important role in describing the charm hadron interaction
We investigate the interaction between $Omega$ baryons in the $^1S_0$ channel from 2+1 flavor lattice QCD simulations. On the basis of the HAL QCD method, the $OmegaOmega$ potential is extracted from the Nambu-Bethe-Salpeter wave function calculated