ترغب بنشر مسار تعليمي؟ اضغط هنا

Physical Point Simulation in 2+1 Flavor Lattice QCD

240   0   0.0 ( 0 )
 نشر من قبل Naoya Ukita
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of the physical point simulation in 2+1 flavor lattice QCD with the nonperturbatively $O(a)$-improved Wilson quark action and the Iwasaki gauge action at $beta=1.9$ on a $32^3 times 64$ lattice. The physical quark masses together with the lattice spacing is determined with $m_pi$, $m_K$ and $m_Omega$ as physical inputs. There are two key algorithmic ingredients to make possible the direct simulation at the physical point: One is the mass-preconditioned domain-decomposed HMC algorithm to reduce the computational cost. The other is the reweighting technique to adjust the hopping parameters exactly to the physical point. The physics results include the hadron spectrum, the quark masses and the pseudoscalar meson decay constants. The renormalization factors are nonperturbatively evaluated with the Schr{o}dinger functional method. The results are compared with the previous ones obtained by the chiral extrapolation method.



قيم البحث

اقرأ أيضاً

We present the first results of the PACS-CS project which aims to simulate 2+1 flavor lattice QCD on the physical point with the nonperturbatively $O(a)$-improved Wilson quark action and the Iwasaki gauge action. Numerical simulations are carried out at the lattice spacing of $a=0.0907(13)$fm on a $32^3times 64$ lattice with the use of the DDHMC algorithm to reduce the up-down quark mass. Further algorithmic improvements make possible the simulation whose ud quark mass is as light as the physical value. The resulting PS meson masses range from 702MeV down to 156MeV, which clearly exhibit the presence of chiral logarithms. An analysis of the PS meson sector with SU(3) ChPT reveals that the NLO corrections are large at the physical strange quark mass. In order to estimate the physical ud quark mass, we employ the SU(2) chiral analysis expanding the strange quark contributions analytically around the physical strange quark mass. The SU(2) LECs ${bar l}_3$ and ${bar l}_4$ are comparable with the recent estimates by other lattice QCD calculations. We determine the physical point together with the lattice spacing employing $m_pi$, $m_K$ and $m_Omega$ as input. The hadron spectrum extrapolated to the physical point shows an agreement with the experimental values at a few % level of statistical errors, albeit there remain possible cutoff effects. We also find that our results of $f_pi=134.0(4.2)$MeV, $f_K=159.4(3.1)$MeV and $f_K/f_pi=1.189(20)$ with the perturbative renormalization factors are compatible with the experimental values. For the physical quark masses we obtain $m_{rm ud}^msbar=2.527(47)$MeV and $m_{rm s}^msbar=72.72(78)$MeV extracted from the axial-vector Ward-Takahashi identity with the perturbative renormalization factors.
We investigate the charmed baryon mass spectrum using the relativistic heavy quark action on 2+1 flavor PACS-CS configurations previously generated on $32^3 times 64$ lattice. The dynamical up-down and strange quark masses are tuned to their physical values, reweighted from those employed in the configuration generation. At the physical point, the inverse lattice spacing determined from the $Omega$ baryon mass gives $a^{-1}=2.194(10)$ GeV, and thus the spatial extent becomes $L = 32 a = 2.88(1)$ fm. Our results for the charmed baryon masses are consistent with experimental values, except for the mass of $Xi_{cc}$, which has been measured by only one experimental group so far and has not been confirmed yet by others. In addition, we report values of other doubly and triply charmed baryon masses, which have never been measured experimentally.
125 - Yoshinobu Kuramashi 2008
We report on the PACS-CS project focusing on a direct simulation of 2+1 flavor QCD on the physical point and chiral analysis of meson and baryon masses off the physical point with both the SU(2) and SU(3) chiral perturbation theories. Configurations are generated with the O(a)-improved Wilson quark action and the Iwasaki gauge action. The up-down quark is simulated by employing the DDHMC algorithm with several improvements and the UV-filtered PHMC algorithm is implemented for the strange quark. We investigate the convergence behaviors of the SU(2) and SU(3) chiral expansions up to NLO for the pseudoscalar meson sector, where the up-down quark mass ranges from 3 MeV to 24 MeV and the strange quark mass is chosen around the physical value. The fit results for the low energy constants are compared with those recently obtained by other groups. We also discuss the importance of the direct simulation at the physical point by comparing the physical quantities measured on the physical point with those estimated by the extrapolation method.
We present the results of 1+1+1 flavor QCD+QED simulation at the physical point, in which the dynamical quark effects in QED and the up-down quark mass difference are incorporated by the reweighting technique. The physical quark masses together with the lattice spacing are determined with $m_{pi^+}$, $m_{K^+}$, $m_{K^0}$ and $m_{Omega^-}$ as physical inputs. Calculations are carried out using a set of 2+1 flavor QCD configurations near the physical point generated by the non-perturbatively $O(a)$-improved Wilson quark action and the Iwasaki gauge action at $beta=1.9$ on a $32^3times 64$ lattice. We evaluate the values of the up, down and strange quark masses individually with non-perturbative QCD renormalization.
We present an update on our results of nucleon form factors measured on a large-volume lattice $(8.1rm{fm})^4$ at almost the physical point in 2+1 flavor QCD. The configurations are generated with the stout-smeared $mathcal{O}(a)$ improved Wilson qua rk action and Iwasaki gauge action at $beta = 1.82$, which corresponds to the lattice spacing of 0.085 fm. The pion mass at the simulation point is about 145 MeV. We determine the iso- vector electric radius and magnetic moment from nucleon electric ($G_E$) and magnetic ($G_M$) form factors. We also report on preliminary results of the axial-vector ($F_A$), induced pseudo-scalar ($F_P$) and pseudo-scalar ($G_P$) form factors in order to verify the axial Ward- Takahashi identity in terms of the nucleon matrix elements, which may be called as the generalized Goldberger-Treiman relation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا