ترغب بنشر مسار تعليمي؟ اضغط هنا

High-speed charge-to-time converter ASIC for the Super-Kamiokande detector

127   0   0.0 ( 0 )
 نشر من قبل Haruki Nishino
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A new application-specific integrated circuit (ASIC), the high-speed charge-to-time converter (QTC) IWATSU CLC101, provides three channels, each consisting of preamplifier, discriminator, low-pass filter, and charge integration circuitry, optimized for the waveform of a photomultiplier tube (PMT). This ASIC detects PMT signals using individual built-in discriminators and drives output timing signals whose width represents the integrated charge of the PMT signal. Combined with external input circuits composed of passive elements, the QTC provides full analog signal processing for the detectors PMTs, ready for further processing by time-to-digital converters (TDCs). High-rate (>1MHz) signal processing is achieved by short-charge-conversion-time and baseline-restoration circuits. Wide-range charge measurements are enabled by offering three gain ranges while maintaining a short cycle time. QTC chip test results show good analog performance, with efficient detection for a single photoelectron signal, four orders of magnitude dynamic range (0:3mV ~ 3V; 0:2 ~ 2500 pC), 1% charge linearity, 0.2 pC charge resolution, and 0.1 ns timing resolution. Test results on ambient temperature dependence, channel isolation, and rate dependence also meet specifications.



قيم البحث

اقرأ أيضاً

148 - K. Abe , Y. Hayato , T. Iida 2013
Procedures and results on hardware level detector calibration in Super-Kamiokande (SK) are presented in this paper. In particular, we report improvements made in our calibration methods for the experimental phase IV in which new readout electronics h ave been operating since 2008. The topics are separated into two parts. The first part describes the determination of constants needed to interpret the digitized output of our electronics so that we can obtain physical numbers such as photon counts and their arrival times for each photomultiplier tube (PMT). In this context, we developed an in-situ procedure to determine high-voltage settings for PMTs in large detectors like SK, as well as a new method for measuring PMT quantum efficiency and gain in such a detector. The second part describes the modeling of the detector in our Monte Carlo simulation, including in particular the optical properties of its water target and their variability over time. Detailed studies on the water quality are also presented. As a result of this work, we achieved a precision sufficient for physics analysis over a wide energy range (from a few MeV to above a TeV). For example, the charge determination was understood at the 1% level, and the timing resolution was 2.1 nsec at the one-photoelectron charge level and 0.5 nsec at the 100-photoelectron charge level.
We present the second prototype of a time-to-digital (TDC) ASIC for the upgrade of the ATLAS Monitored Drift Tube (MDT) detector for High-Luminosity LHC operations. Compared to the first prototype, triple modular redundancy has been implemented for t he configuration and flow control logic. The total power consumption is increased by less than 10 mW while achieving the same time resolution and channel uniformity. A mini-DAQ system has been built to verify the front-end electronics chain with the new prototype together with other ASICs and boards in triggered mode. Cosmic ray tests with a small-diameter MDT chamber indicate that the configuration and data transmission of the readout electronics perform well. It is expected that this prototype design will be used in the final production.
120 - K. Abe , C. Bronner , Y. Hayato 2021
In order to improve Super-Kamiokandes neutron detection efficiency and to thereby increase its sensitivity to the diffuse supernova neutrino background flux, 13 tons of Gd2(SO4)3*8H2O(gadolinium sulfate octahydrate) was dissolved into the detectors o therwise ultrapure water from July 14 to August 17, 2020, marking the start of the SK-Gd phase of operations. During the loading, water was continuously recirculated at a rate of 60 m3/h, extracting water from the top of the detector and mixing it with concentrated Gd2(SO4)3*8H2O solution to create a 0.02% solution of the Gd compound before injecting it into the bottom of the detector. A clear boundary between the Gd-loaded and pure water was maintained through the loading, enabling monitoring of the loading itself and the spatial uniformity of the Gd concentration over the 35 days it took to reach the top of the detector.During the subsequent commissioning the recirculation rate was increased to 120 m3/h, resulting in a constant and uniform distribution of Gd throughout the detector and water transparency equivalent to that of previous pure-water operation periods. Using an Am-Be neutron calibration source the mean neutron capture time was measured to be $115.6pm0.6$ $mu$s, which corresponds to a Gd concentration of $110.9pm1.4$ (stat.only) ppm, as expected for this level of doping. This paper describes changes made to the water circulation system for this detector upgrade, the Gd loading procedure, detector commissioning, and the first neutron calibration measurements in SK-Gd.
A high-precision charge measurement can be achieved by the area integration of a digitized quasi-Gaussian signal after the signal passes through the shaper and analog-to-digital converter (ADC). The charge measurement contains an error due to the unc ertainty of the first sampled point of a signal waveform. To reduce the error, we employ a time-to-digital converter (TDC) to measure the uncertainty precisely, and we design correction algorithms to improve the resolution of the charge measurement. This work includes analysis and simulations of the proposed algorithms and implementation of them in an FPGA device. Besides, the tests are also conducted to evaluate the performance of the correction method. Test results indicate that the resolution of the charge measurement is successfully improved from 0.231% to 0.126% by using a signal from the shaping circuit (with the amplitude of 2 V, and leading and trailing edges of about 80 ns and 280 ns, respectively) digitized at the sampling rate of 62.5 Msps.
The radioactive noble gas radon can be a serious background source in the underground particle physics experiments studying processes that deposit energy comparable to its decay products. Low energy solar neutrino measurements at Super-Kamiokande suf fer from these backgrounds and therefore require precise characterization of the radon concentration in the detectors ultra-pure water. For this purpose, we have developed a measurement system consisting of a radon extraction column, a charcoal trap, and a radon detector. In this article we discuss the design, calibration, and performance of the radon extraction column. We also describe the design of the measurement system and evaluate its performance, including its background. Using this system we measured the radon concentration in Super-Kamiokandes water between May 2014 and October 2015. The measured radon concentration in the supply lines of the water circulation system was $1.74pm0.14~mathrm{mBq/m^{3}}$ and in the return line was $9.06pm0.58~mathrm{mBq/m^{3}}$. Water sampled from the center region of the detector itself had a concentration of $<0.23~mathrm{mBq/m^{3}}$ ($95%$ C.L.) and water sampled from the bottom region of the detector had a concentration of $2.63pm0.22~mathrm{mBq/m^{3}}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا