ترغب بنشر مسار تعليمي؟ اضغط هنا

High Precision Astrometry with MICADO at the European Extremely Large Telescope

147   0   0.0 ( 0 )
 نشر من قبل Sascha Trippe
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Trippe




اسأل ChatGPT حول البحث

In this article we identify and discuss various statistical and systematic effects influencing the astrometric accuracy achievable with MICADO, the near-infrared imaging camera proposed for the 42-metre European Extremely Large Telescope (E-ELT). These effects are instrumental (e.g. geometric distortion), atmospheric (e.g. chromatic differential refraction), and astronomical (reference source selection). We find that there are several phenomena having impact on ~100 micro-arcsec scales, meaning they can be substantially larger than the theoretical statistical astrometric accuracy of an optical/NIR 42m-telescope. Depending on type, these effects need to be controlled via dedicated instrumental design properties or via dedicated calibration procedures. We conclude that if this is done properly, astrometric accuracies of 40 micro-arcsec or better - with 40 micro-arcsec/year in proper motions corresponding to ~20 km/s at 100 kpc distance - can be achieved in one epoch of actual observations



قيم البحث

اقرأ أيضاً

Astrometric detection and mass determination of Earth-mass exoplanets requires sub-microarcsec accuracy, which is theoretically possible with an imaging space telescope using field stars as an astrometric reference. The measurement must however overc ome astrometric distortions which are much larger than the photon noise limit. To address this issue, we propose to generate faint stellar diffraction spikes using a two-dimensional grid of regularly spaced small dark spots added to the surface of the primary mirror (PM). Accurate astrometric motion of the host star is obtained by comparing the position of the spikes to the background field stars. The spikes do not contribute to scattered light in the central part of the field and therefore allow unperturbed coronagraphic observation of the stars immediate surrounding. Because the diffraction spikes are created on the PM and imaged on the same focal plane detector as the background stars, astrometric distortions affect equally the diffraction spikes and the background stars, and are therefore calibrated. We describe the technique, detail how the data collected by the wide-field camera are used to derive astrometric motion, and identify the main sources of astrometric error using numerical simulations and analytical derivations. We find that the 1.4 m diameter telescope, 0.3 sq.deg field we adopt as a baseline design achieves 0.2 microarcsec single measurement astrometric accuracy. The diffractive pupil concept thus enables sub-microarcsec astrometry without relying on the accurate pointing, external metrology or high stability hardware required with previously proposed high precision astrometry concepts.
92 - B. Neichel 2018
The European Extremely Large Telescope will see first lights by the end of 2024. With a diameter of almost 40 meters, it will be the biggest optical telescope ever built from the ground. The ELT will open a brand new window in a sensitivity / spatial angular resolution parameter space. To take the full benefit of the scientific potential of this giant, all the instruments will be equipped with Adaptive Optics (AO), providing the sharpest images. This paper provides a quick overview of the AO capabilities of the future instruments to be deployed at the ELT, highlight some of the expected performance and describe a couple of technical challenges that are still to tackle for an optimal scientific use. This paper has been presented at the Societe Francaise dAstronomie et Astrophysique symposium in Bordeaux 2018, it is then naturally biased toward the French contribution for the ELT.
136 - Alastair Basden 2015
The performance of a wide-field adaptive optics system depends on input design parameters. Here we investigate the performance of a multi-conjugate adaptive optics system design for the European Extremely Large Telescope, using an end-to-end Monte-Ca rlo adaptive optics simulation tool, DASP. We consider parameters such as the number of laser guide stars, sodium layer depth, wavefront sensor pixel scale, number of deformable mirrors, mirror conjugation and actuator pitch. We provide potential areas where costs savings can be made, and investigate trade-offs between performance and cost. We conclude that a 6 laser guide star system using 3 DMs seems to be a sweet spot for performance and cost compromise.
The performance of a wide-field adaptive optics system depends on input design parameters. Here we investigate the performance of a multi-object adaptive optics system design for the European Extremely Large Telescope, using an end-to-end Monte-Carlo adaptive optics simulation tool, DASP, with relevance for proposed instruments such as MOSAIC. We consider parameters such as the number of laser guide stars, sodium layer depth, wavefront sensor pixel scale, actuator pitch and natural guide star availability. We provide potential areas where costs savings can be made, and investigate trade-offs between performance and cost, and provide solutions that would enable such an instrument to be built with currently available technology. Our key recommendations include a trade-off for laser guide star wavefront sensor pixel scale of about 0.7 arcseconds per pixel, and a field of view of at least 7 arcseconds, that EMCCD technology should be used for natural guide star wavefront sensors even if reduced frame rate is necessary, and that sky coverage can be improved by a slight reduction in natural guide star sub-aperture count without significantly affecting tomographic performance. We find that adaptive optics correction can be maintained across a wide field of view, up to 7 arcminutes in diameter. We also recommend the use of at least 4 laser guide stars, and include ground-layer and multi-object adaptive optics performance estimates.
148 - S. Kendrew 2007
MIDIR is the proposed thermal/mid-IR imager and spectrograph for the European Extremely Large Telescope (E-ELT). It will cover the wavelength range of 3 to at least 20 microns. Designed for diffraction-limited performance over the entire wavelength r ange, MIDIR will require an adaptive optics system; a cryogenically cooled system could offer optimal performance in the IR, and this is a critical aspect of the instrument design. We present here an overview of the project, including a discussion of MIDIRs science goals and a comparison with other infrared (IR) facilities planned in the next decade; top level requirements derived from these goals are outlined. We describe the optical and mechanical design work carried out in the context of a conceptual design study, and discuss some important issues to emerge from this work, related to the design, operation and calibration of the instrument. The impact of telescope optical design choices on the requirements for the MIDIR instrument is demonstrated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا