ﻻ يوجد ملخص باللغة العربية
MIDIR is the proposed thermal/mid-IR imager and spectrograph for the European Extremely Large Telescope (E-ELT). It will cover the wavelength range of 3 to at least 20 microns. Designed for diffraction-limited performance over the entire wavelength range, MIDIR will require an adaptive optics system; a cryogenically cooled system could offer optimal performance in the IR, and this is a critical aspect of the instrument design. We present here an overview of the project, including a discussion of MIDIRs science goals and a comparison with other infrared (IR) facilities planned in the next decade; top level requirements derived from these goals are outlined. We describe the optical and mechanical design work carried out in the context of a conceptual design study, and discuss some important issues to emerge from this work, related to the design, operation and calibration of the instrument. The impact of telescope optical design choices on the requirements for the MIDIR instrument is demonstrated.
Design and construction of the instruments for ESOs Extremely Large Telescope (ELT) began in 2015. We present here a brief overview of the status of the ELT Instrumentation Plan. Dedicated articles on each instrument are presented elsewhere this volume.
We describe and summarize the optical challenges for future instrumentation for Extremely Large Telescopes (ELTs). Knowing the complex instrumental requirements is crucial for the successful design of 30-60m aperture telescopes. After all, the succes
In this article we identify and discuss various statistical and systematic effects influencing the astrometric accuracy achievable with MICADO, the near-infrared imaging camera proposed for the 42-metre European Extremely Large Telescope (E-ELT). The
The European Extremely Large Telescope will see first lights by the end of 2024. With a diameter of almost 40 meters, it will be the biggest optical telescope ever built from the ground. The ELT will open a brand new window in a sensitivity / spatial
We present preliminary source counts at 6.7um and 15um from the Preliminary Analysis of the European Large Area ISO survey, with limiting flux densities of ~2mJy at 15um & ~1mJy at 6.7um. We separate the stellar contribution from the extragalactic us