ﻻ يوجد ملخص باللغة العربية
We consider, in a model-independent framework, the potential for observing dark matter in neutrino detectors through the interaction $bar{f} p to e^+ n$, where $f$ is a dark fermion. Operators of dimension six or less are considered, and constraints are placed on their coefficients using the dark matter lifetime and its decays to states which include $gamma$ rays or $e^+e^-$ pairs. After these constraints are applied, there remains one operator which can possibly contribute to $bar{f} p to e^+ n$ in neutrino detectors at an observable level. We then consider the results from the Super-Kamiokande relic supernova neutrino search and find that Super-K can probe the new physics scale of this interaction up to $O(100mbox{ TeV})$.
We explore the potential for the direct detection of light fermionic dark matter in neutrino detectors. We consider the possible observation of the process $bar{f} p to e^+ n$, where $f$ is a dark matter fermion, in a model-independent manner. All op
Neutrino and dark matter experiments with large-volume ($gtrsim 1$ ton) detectors can provide excellent sensitivity to signals induced by energetic light dark matter coming from the present universe. Taking boosted dark matter as a concrete example o
The possibility of direct detection of light fermionic dark matter in neutrino detectors is explored from a model-independent standpoint. We consider all operators of dimension six or lower which can contribute to the interaction $bar{f} p to e^+ n$,
The equation of state for a degenerate gas of fermions at zero temperature in the non relativistic case is a polytrope, i.e. $p=gamma rho^{5/3}/m_F^{8/3}$. If dark matter is modelled by such non interacting fermion, this dependence in the mass of the
In this work we study a scalar field dark matter model with mass of the order of 100 MeV. We assume dark matter is produced in the process $e^-+e^+to phi +phi^*+gamma$, that, in fact, could be a background for the standard process $e^-+e^+to u +bar