ﻻ يوجد ملخص باللغة العربية
We explore the potential for the direct detection of light fermionic dark matter in neutrino detectors. We consider the possible observation of the process $bar{f} p to e^+ n$, where $f$ is a dark matter fermion, in a model-independent manner. All operators of dimension six or lower which can contribute to this process are listed, and we place constraints on these operators from decays of $f$ which contain $gamma$ rays or electrons. One operator is found which is sufficiently weakly constrained that it could give observable interactions in neutrino detectors. We find that Super-Kamiokande can probe the new physics scale for this operator up to $O(100{TeV})$.
We consider, in a model-independent framework, the potential for observing dark matter in neutrino detectors through the interaction $bar{f} p to e^+ n$, where $f$ is a dark fermion. Operators of dimension six or less are considered, and constraints
Neutrino and dark matter experiments with large-volume ($gtrsim 1$ ton) detectors can provide excellent sensitivity to signals induced by energetic light dark matter coming from the present universe. Taking boosted dark matter as a concrete example o
We study a light thermal scalar dark matter (DM) model with a light scalar mediator mixed with the standard model Higgs boson, including both the theoretical bounds and the current experimental constraints. The thermal scalar DM with the mass below a
In this work we study a scalar field dark matter model with mass of the order of 100 MeV. We assume dark matter is produced in the process $e^-+e^+to phi +phi^*+gamma$, that, in fact, could be a background for the standard process $e^-+e^+to u +bar
We consider the possibility that dark matter can communicate with the Standard Model fields via flavor interactions. We take the dark matter to belong to a dark sector which contains at least two types, or flavors, of particles and then hypothesize t