ترغب بنشر مسار تعليمي؟ اضغط هنا

Equation of state of classical Coulomb plasma mixtures

152   0   0.0 ( 0 )
 نشر من قبل Alexander Potekhin
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Y. Potekhin




اسأل ChatGPT حول البحث

We develop analytic approximations of thermodynamic functions of fully ionized nonideal electron-ion plasma mixtures. In the regime of strong Coulomb coupling, we use our previously developed analytic approximations for the free energy of one-component plasmas with rigid and polarizable electron background and apply the linear mixing rule (LMR). Other thermodynamic functions are obtained through analytic derivation of this free energy. In order to obtain an analytic approximation for the intermediate coupling and transition to the Debye-Hueckel limit, we perform hypernetted-chain calculations of the free energy, internal energy, and pressure for mixtures of different ion species and introduce a correction to the LMR, which allows a smooth transition from strong to weak Coulomb coupling in agreement with the numerical results.



قيم البحث

اقرأ أيضاً

405 - A. Y. Potekhin 2009
Recently developed analytic approximation for the equation of state of fully ionized nonideal electron-ion plasma mixtures [Potekhin et al., Phys. Rev. E, 79, 016411 (2009); arXiv:0812.4344], which covers the transition between the weak and strong Co ulomb coupling regimes and reproduces numerical results obtained in the hypernetted chain (HNC) approximation, is modified in order to fit the small deviations from the linear mixing in the strong coupling regime, revealed by recent Monte Carlo simulations. In addition, a mixing rule is proposed for the regime of weak coupling, which generalizes post-Debye density corrections to the case of mixtures and numerically agrees with the HNC approximation in that regime.
The paper presents a theoretical work on the dynamics of Coulomb explosion for spherical nanoplasmas composed by two different ion species. Particular attention has been dedicated to study the energy spectra of the ions with the larger charge-to-mass ratio. The connection between the formation of shock shells and the energy spread of the ions has been the object of a detailed analysis, showing that under particular conditions the width of the asymptotic energy spectrum tends to become very narrow, which leads to a multi-valued ion phase-space. The conditions to generate a quasi mono-energetic ion spectrum have been rigorously demonstrated and verifed by numerical simulations, using a technique that, exploiting the spherical symmetry of the problem, allows one to obtain very accurate and precise results.
We calculate the equation of state of dense hydrogen within the chemical picture. Fluid variational theory is generalized for a multi-component system of molecules, atoms, electrons, and protons. Chemical equilibrium is supposed for the reactions dis sociation and ionization. We identify the region of thermodynamic instability which is related to the plasma phase transition. The reflectivity is calculated along the Hugoniot curve and compared with experimental results. The equation-of-state data is used to calculate the pressure and temperature profiles for the interior of Jupiter.
The equation of state (EOS) for partially ionized carbon, oxygen, and carbon-oxygen mixtures at temperatures 3times10^5 K <~ T <~ 3times10^6 K is calculated over a wide range of densities, using the method of free energy minimization in the framework of the chemical picture of plasmas. The free energy model is an improved extension of our model previously developed for pure carbon (Phys. Rev. E, 72, 046402; arXiv:physics/0510006). The internal partition functions of bound species are calculated by a self-consistent treatment of each ionization stage in the plasma environment taking into account pressure ionization. The long-range Coulomb interactions between ions and screening of the ions by free electrons are included using our previously published analytical model, recently improved, in particular for the case of mixtures. We also propose a simple but accurate method of calculation of the EOS of partially ionized binary mixtures based on detailed ionization balance calculations for pure substances.
Complex plasma mixtures with three or more components are often encountered in astrophysics or in inertial confinement fusion (ICF) experiments. For mixtures containing species with large differences in atomic number Z, the modeling needs to consider at the same time the kinetic theory for low-Z elements combined with the theory of strongly coupled plasma for high-Z elements, as well as all the intermediate situations that can appear in multi-component systems. For such cases, we study the pair distribution functions, self-diffusions, mutual diffusion and viscosity for ternary mixtures at extreme conditions. These quantities can be produced from first principles using orbital free molecular dynamics at the computational expense of very intensive simulations to reach good statistics. Utilizing the first-principles results as reference data, we assess the merit of a global analytic model for transport coefficients, Pseudo-Ions in Jellium (PIJ), based on an iso-electronic assumption ( iso-n e ). With a multi-component hypernetted-chain integral equation, we verify the quality of the iso-n e prescription for describing the static structure of the mixtures. This semi-analytical modeling compares well with the simulation results and allows one to consider plasma mixtures not accessible to simulations. Applications are given for the mix of materials in ICF experiments. A reduction of a multicomponent mixture to an effective binary mixture is also established in the hydrodynamic limit and compared with PIJ estimations for ICF relevant mixtures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا