ترغب بنشر مسار تعليمي؟ اضغط هنا

Tuning of crystal structure and magnetic properties by exceptionally large epitaxial strains

200   0   0.0 ( 0 )
 نشر من قبل J\\\"org Buschbeck
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Huge deformations of the crystal lattice can be achieved in materials with inherent structural instability by epitaxial straining. By coherent growth on seven different substrates the in-plane lattice constants of 50 nm thick Fe70Pd30 films are continuously varied. The maximum epitaxial strain reaches 8,3 % relative to the fcc lattice. The in-plane lattice strain results in a remarkable tetragonal distortion ranging from c/abct = 1.09 to 1.39, covering most of the Bain transformation path from fcc to bcc crystal structure. This has dramatic consequences for the magnetic key properties. Magnetometry and X-ray circular dichroism (XMCD) measurements show that Curie temperature, orbital magnetic moment, and magnetocrystalline anisotropy are tuned over broad ranges.



قيم البحث

اقرأ أيضاً

The magnetic properties of two-dimensional VI3 bilayer are the focus of our first-principles analysis, highlighting the role of trigonal crystal-field effects and carried out in comparison with the CrI3 prototypical case, where the effects are absent . In VI3 bilayers, the empty a1g state - consistent with the observed trigonal distortion - is found to play a crucial role in both stabilizing the insulating state and in determining the inter-layer magnetic interaction. Indeed, an analysis based on maximally localized Wannier functions allows to evaluate the interlayer exchange interactions in two different VI3 stackings (labelled AB and AB), to interpret the results in terms of virtual-hopping mechanism, and to highlight the strongest hopping channels underlying the magnetic interlayer coupling. Upon application of electric fields perpendicular to the slab, we find that the magnetic ground-state in the AB stacking can be switched from antiferromagnetic to ferromagnetic, suggesting VI3 bilayer as an appealing candidate for electric-field-driven miniaturized spintronic devices.
The double perovskite Sr2CrReO6 is an interesting material for spintronics, showing ferrimagnetism up to 635 K with a predicted high spin polarization of about 86%. We fabricated Sr2CrReO6 epitaxial films by pulsed laser deposition on (001)-oriented SrTiO3 substrates. Phase-pure films with optimum crystallographic and magnetic properties were obtained by growing at a substrate temperature of 700 degree C in pure O2 of 6.6x10-4 mbar. The films are c-axis oriented, coherently strained, and show less than 20% anti-site defects. The magnetization curves reveal high saturation magnetization of 0.8 muB per formula unit and high coercivity of 1.1 T, as well as a strong magnetic anisotropy.
82 - D. Han , R. Moalla , I. Fina 2021
The impact of epitaxial strain on the structural, electronic, and thermoelectric properties of p-type transparent Sr-doped LaCrO3 thin films has been investigated. For this purpose, high-quality fully strained La0.75Sr0.25CrO3 (LSCO) epitaxial thin f ilms were grown by molecular beam epitaxy on three different (pseudo)cubic (001)-oriented perovskite oxide substrates: LaAlO3, (LaAlO3)0.3(Sr2AlTaO6)0.7, and DyScO3. The lattice mismatch between the LSCO films and the substrates induces in-plane strain ranging from -2.06% (compressive) to +1.75% (tensile). The electric conductivity can be controlled over 2 orders of magnitude, ranging from 0.5 S/cm (tensile strain) to 35 S/cm (compressive strain). Consistently, the Seebeck coefficient S can be finely tuned by a factor of almost 2 from 127 microV/K (compressive strain) to 208 microV/K (tensile strain). Interestingly, we show that the thermoelectric power factor can consequently be tuned by almost 2 orders of magnitude. The compressive strain yields a remarkable enhancement by a factor of 3 for 2% compressive strain with respect to almost relaxed films. These results demonstrate that epitaxial strain is a powerful lever to control the electric properties of LSCO and enhance its thermoelectric properties, which is of high interest for various devices and key applications such as thermal energy harvesters, coolers, transparent conductors, photocatalyzers, and spintronic memories.
138 - T. Chatterji , M. Meven , 2016
We have investigated the temperature evolution of the magnetic structures of HoFeO$_3$ by single crystal neutron diffraction. The three different magnetic structures found as a function of temperature for hfo are described by the magnetic groups Pb$$ n$2_1$, Pbn$2_1$ and Pbn$2_1$ and are stable in the temperature ranges $approx$ 600-55~K, 55-37~K and 35$>T>2$~K respectively. In all three the fundamental coupling between the Fe sub-lattices remains the same and only their orientation and the degree of canting away from the ideal axial direction varies. The magnetic polarisation of the Ho sub-lattices in these two higher temperature regions, in which the major components of the Fe moment lie along $x$ and $y$, is very small. The canting of the moments from the axial directions is attributed to the antisymmetric interactions allowed by the crystal symmetry. They include contributions from single ion anisotropy as well as the Dzyaloshinski antisymmetric exchange. In the low temperature phase two further structural transitions are apparent in which the spontaneous magnetisation changes sign with respect to the underlying antiferromagnetic configuration. In this temperature range the antisymmetric exchange energy varies rapidly as the the Ho sub-lattices begin to order. So long as the ordered Ho moments are small the antisymmetric exchange is due only to Fe-Fe interactions, but as the degree of Ho order increases the Fe-Ho interactions take over whilst at the lowest temperatures, when the Ho moments approach saturation the Ho-Ho interactions dominate. The reversals of the spontaneous magnetisation found in this study suggest that in hfo the sums of the Fe-Fe and Ho-Ho antisymmetric interactions have the same sign as one another, but that of the Ho-Fe terms is opposite.
CaFe2O4 is a highly anisotropic antiferromagnet reported to display two spin arrangements with up-up-down-down (phase A) and up-down-up-down (phase B) configurations. The relative stability of these phases is ruled by the competing ferromagnetic and antiferromagnetic interactions between Fe3+ spins arranged in two different environments, but a complete understanding of the magnetic structure of this material does not exist yet. In this study we investigate epitaxial CaFe2O4 thin films grown on TiO2 (110) substrates by means of Pulsed Laser Deposition (PLD). Structural characterization reveals the coexistence of two out-of-plane crystal orientations and the formation of three in-plane oriented domains. The magnetic properties of the films, investigated macroscopically as well as locally, including highly sensitive Mossbauer spectroscopy, reveal the presence of just one order parameter showing long-range ordering below T = 185 K and the critical nature of the transition. In addition, a non-zero in-plane magnetization is found, consistent with the presence of uncompensated spins at phase or domain boundaries, as proposed for bulk samples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا