ترغب بنشر مسار تعليمي؟ اضغط هنا

A simple approach to approximate quantum error correction based on the transpose channel

134   0   0.0 ( 0 )
 نشر من قبل Hui Khoon Ng
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Hui Khoon Ng




اسأل ChatGPT حول البحث

We demonstrate that there exists a universal, near-optimal recovery map---the transpose channel---for approximate quantum error-correcting codes, where optimality is defined using the worst-case fidelity. Using the transpose channel, we provide an alternative interpretation of the standard quantum error correction (QEC) conditions, and generalize them to a set of conditions for approximate QEC (AQEC) codes. This forms the basis of a simple algorithm for finding AQEC codes. Our analytical approach is a departure from earlier work relying on exhaustive numerical search for the optimal recovery map, with optimality defined based on entanglement fidelity. For the practically useful case of codes encoding a single qubit of information, our algorithm is particularly easy to implement.



قيم البحث

اقرأ أيضاً

232 - Andrew S. Fletcher 2007
Quantum error correction (QEC) is an essential concept for any quantum information processing device. Typically, QEC is designed with minimal assumptions about the noise process; this generic assumption exacts a high cost in efficiency and performanc e. In physical systems, errors are not likely to be arbitrary; rather we will have reasonable models for the structure of quantum decoherence. We may choose quantum error correcting codes and recovery operations that specifically target the most likely errors. We present a convex optimization method to determine the optimal (in terms of average entanglement fidelity) recovery operation for a given channel, encoding, and information source. This is solvable via a semidefinite program (SDP). We present computational algorithms to generate near-optimal recovery operations structured to begin with a projective syndrome measurement. These structured operations are more computationally scalable than the SDP required for computing the optimal; we can thus numerically analyze longer codes. Using Lagrange duality, we bound the performance of the structured recovery operations and show that they are nearly optimal in many relevant cases. We present two classes of channel-adapted quantum error correcting codes specifically designed for the amplitude damping channel. These have significantly higher rates with shorter block lengths than corresponding generic quantum error correcting codes. Both classes are stabilizer codes, and have good fidelity performance with stabilizer recovery operations. The encoding, syndrome measurement, and syndrome recovery operations can all be implemented with Clifford group operations.
69 - Sisi Zhou , Liang Jiang 2019
For a generic set of Markovian noise models, the estimation precision of a parameter associated with the Hamiltonian is limited by the $1/sqrt{t}$ scaling where $t$ is the total probing time, in which case the maximal possible quantum improvement in the asymptotic limit of large $t$ is restricted to a constant factor. However, situations arise where the constant factor improvement could be significant, yet no effective quantum strategies are known. Here we propose an optimal approximate quantum error correction (AQEC) strategy asymptotically saturating the precision lower bound in the most general adaptive parameter estimation scheme where arbitrary and frequent quantum controls are allowed. We also provide an efficient numerical algorithm finding the optimal code. Finally, we consider highly-biased noise and show that using the optimal AQEC strategy, strong noises are fully corrected, while the estimation precision depends only on the strength of weak noises in the limiting case.
199 - W. Wang , Z.-J. Chen , X. Liu 2021
By exploiting the exotic quantum states of a probe, it is possible to realize efficient sensors that are attractive for practical metrology applications and fundamental studies. Similar to other quantum technologies, quantum sensing is suffering from noises and thus the experimental developments are hindered. Although theoretical schemes based on quantum error correction (QEC) have been proposed to combat noises, their demonstrations are prevented by the stringent experimental requirements, such as perfect quantum operations and the orthogonal condition between the sensing interaction Hamiltonian and the noise Lindbladians. Here, we report an experimental demonstration of a quantum enhancement in sensing with a bosonic probe with different encodings, by exploring the large Hilbert space of the bosonic mode and developing both the approximate QEC and the quantum jump tracking approaches. In a practical radiometry scenario, we attain a 5.3 dB enhancement of sensitivity, which reaches $9.1times10^{-4},mathrm{Hz}^{-1/2}$ when measuring the excitation population of a receiver mode. Our results demonstrate the potential of quantum sensing with near-term quantum technologies, not only shedding new light on the quantum advantage of sensing by revealing its difference from other quantum applications, but also stimulating further efforts on bosonic quantum technologies.
Quantum error correction and symmetry arise in many areas of physics, including many-body systems, metrology in the presence of noise, fault-tolerant computation, and holographic quantum gravity. Here we study the compatibility of these two important principles. If a logical quantum system is encoded into $n$ physical subsystems, we say that the code is covariant with respect to a symmetry group $G$ if a $G$ transformation on the logical system can be realized by performing transformations on the individual subsystems. For a $G$-covariant code with $G$ a continuous group, we derive a lower bound on the error correction infidelity following erasure of a subsystem. This bound approaches zero when the number of subsystems $n$ or the dimension $d$ of each subsystem is large. We exhibit codes achieving approximately the same scaling of infidelity with $n$ or $d$ as the lower bound. Leveraging tools from representation theory, we prove an approximate version of the Eastin-Knill theorem: If a code admits a universal set of transversal gates and corrects erasure with fixed accuracy, then, for each logical qubit, we need a number of physical qubits per subsystem that is inversely proportional to the error parameter. We construct codes covariant with respect to the full logical unitary group, achieving good accuracy for large $d$ (using random codes) or $n$ (using codes based on $W$-states). We systematically construct codes covariant with respect to general groups, obtaining natural generalizations of qubit codes to, for instance, oscillators and rotors. In the context of the AdS/CFT correspondence, our approach provides insight into how time evolution in the bulk corresponds to time evolution on the boundary without violating the Eastin-Knill theorem, and our five-rotor code can be stacked to form a covariant holographic code.
We consider error correction procedures designed specifically for the amplitude damping channel. We analyze amplitude damping errors in the stabilizer formalism. This analysis allows a generalization of the [4,1] `approximate amplitude damping code o f quant-ph/9704002. We present this generalization as a class of [2(M+1),M] codes and present quantum circuits for encoding and recovery operations. We also present a [7,3] amplitude damping code based on the classical Hamming code. All of these are stabilizer codes whose encoding and recovery operations can be completely described with Clifford group operations. Finally, we describe optimization options in which recovery operations may be further adapted according to the damping probability gamma.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا