ﻻ يوجد ملخص باللغة العربية
Precision photometric redshifts will be essential for extracting cosmological parameters from the next generation of wide-area imaging surveys. In this paper we introduce a photometric redshift algorithm, ArborZ, based on the machine-learning technique of Boosted Decision Trees. We study the algorithm using galaxies from the Sloan Digital Sky Survey and from mock catalogs intended to simulate both the SDSS and the upcoming Dark Energy Survey. We show that it improves upon the performance of existing algorithms. Moreover, the method naturally leads to the reconstruction of a full probability density function (PDF) for the photometric redshift of each galaxy, not merely a single best estimate and error, and also provides a photo-z quality figure-of-merit for each galaxy that can be used to reject outliers. We show that the stacked PDFs yield a more accurate reconstruction of the redshift distribution N(z). We discuss limitations of the current algorithm and ideas for future work.
Gradient boosted decision trees (GBDTs) are widely used in machine learning, and the output of current GBDT implementations is a single variable. When there are multiple outputs, GBDT constructs multiple trees corresponding to the output variables. T
The CALICE Semi-Digital Hadronic CALorimeter (SDHCAL) prototype using Glass Resistive Plate Chambers as a sensitive medium is the first technological prototype of a family of high-granularity calorimeters developed by the CALICE collaboration to equi
We study the performance of the hybrid template-machine-learning photometric redshift (photo-$z$) algorithm Delight, which uses Gaussian processes, on a subset of the early data release of the Physics of the Accelerating Universe Survey (PAUS). We ca
The scientific value of the next generation of large continuum surveys would be greatly increased if the redshifts of the newly detected sources could be rapidly and reliably estimated. Given the observational expense of obtaining spectroscopic redsh
We have revised the SWIRE Photometric Redshift Catalogue to take account of new optical photometry in several of the SWIRE areas, and incorporating 2MASS and UKIDSS near infrared data. Aperture matching is an important issue for combining near infrar