ﻻ يوجد ملخص باللغة العربية
We consider functions of natural numbers which allow a combinatorial interpretation as density functions (speed) of classes of relational structures, s uch as Fibonacci numbers, Bell numbers, Catalan numbers and the like. Many of these functions satisfy a linear recurrence relation over $mathbb Z$ or ${mathbb Z}_m$ and allow an interpretation as counting the number of relations satisfying a property expressible in Monadic Second Order Logic (MSOL). C. Blatter and E. Specker (1981) showed that if such a function $f$ counts the number of binary relations satisfying a property expressible in MSOL then $f$ satisfies for every $m in mathbb{N}$ a linear recurrence relation over $mathbb{Z}_m$. In this paper we give a complete characterization in terms of definability in MSOL of the combinatorial functions which satisfy a linear recurrence relation over $mathbb{Z}$, and discuss various extensions and limitations of the Specker-Blatter theorem.
An $h$-ary relation $r$ on a finite set $A$ is said to be emph{hereditarily rigid} if the unary partial functions on $A$ that preserve $r$ are the subfunctions of the identity map or of constant maps. A family of relations ${mathcal F}$ is said to be
The domination polynomial D(G,x) of a graph G is the generating function of its dominating sets. We prove that D(G,x) satisfies a wide range of reduction formulas. We show linear recurrence relations for D(G,x) for arbitrary graphs and for various sp
We identify a canonical structure J associated to any first-order theory, the {it space of definability patterns}. It generalizes the imaginary algebraic closure in a stable theory, and the hyperimaginary bounded closure in simple theories. J admits
We show that, for every linear ordering of $[2]^n$, there is a large subcube on which the ordering is lexicographic. We use this to deduce that every long sequence contains a long monotone subsequence supported on an affine cube. More generally, we
LLT polynomials are $q$-analogues of product of Schur functions that are known to be Schur-positive by Grojnowski and Haiman. However, there is no known combinatorial formula for the coefficients in the Schur expansion. Finding such a formula also pr