ترغب بنشر مسار تعليمي؟ اضغط هنا

Linear relations on LLT polynomials and their k-Schur positivity for k=2

113   0   0.0 ( 0 )
 نشر من قبل Seung Jin Lee
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English
 تأليف Seung Jin Lee




اسأل ChatGPT حول البحث

LLT polynomials are $q$-analogues of product of Schur functions that are known to be Schur-positive by Grojnowski and Haiman. However, there is no known combinatorial formula for the coefficients in the Schur expansion. Finding such a formula also provides Schur positivity of Macdonald polynomials. On the other hand, Haiman and Hugland conjectured that LLT polynomials for skew partitions lying on $k$ adjacent diagonals are $k$-Schur positive, which is much stronger than Schur positivity. In this paper, we prove the conjecture for $k=2$ by analyzing unicellular LLT polynomials. We first present a linearity theorem for unicellular LLT polynomials for $k=2$. By analyzing linear relations between LLT polynomials with known results on LLT polynomials for rectangles, we provide the $2$-Schur positivity of the unicellular LLT polynomials as well as LLT polynomials appearing in Haiman-Hugland conjecture for $k=2$.



قيم البحث

اقرأ أيضاً

The main purpose of this paper is to show that the multiplication of a Schubert polynomial of finite type $A$ by a Schur function, which we refer to as Schubert vs. Schur problem, can be understood from the multiplication in the space of dual $k$-Sch ur functions. Using earlier work by the second author, we encode both problems by means of quasisymmetric functions. On the Schubert vs. Schur side, we study the poset given by the Bergeron-Sottiles $r$-Bruhat order, along with certain operators associated to this order. On the other side, we connect this poset with a graph on dual $k$-Schur functions given by studying the affine grassmannian order of Lam-Lapointe-Morse-Shimozono. Also, we define operators associated to the graph on dual $k$-Schur functions which are analogous to the ones given for the Schubert vs. Schur problem.
A classical result by Schoenberg (1942) identifies all real-valued functions that preserve positive semidefiniteness (psd) when applied entrywise to matrices of arbitrary dimension. Schoenbergs work has continued to attract significant interest, incl uding renewed recent attention due to applications in high-dimensional statistics. However, despite a great deal of effort in the area, an effective characterization of entrywise functions preserving positivity in a fixed dimension remains elusive to date. As a first step, we characterize new classes of polynomials preserving positivity in fixed dimension. The proof of our main result is representation theoretic, and employs Schur polynomials. An alternate, variational approach also leads to several interesting consequences including (a) a hitherto unexplored Schubert cell-type stratification of the cone of psd matrices, (b) new connections between generalized Rayleigh quotients of Hadamard powers and Schur polynomials, and (c) a description of the joint kernels of Hadamard powers.
210 - Shi-Mei Ma , Jun Ma , Jean Yeh 2021
Inspired by the recent work of Chen and Fu on the e-positivity of trivariate second-order Eulerian polynomials, we show the e-positivity of a family of multivariate k-th order Eulerian polynomials. A relationship between the coefficients of this e-po sitive expansion and second-order Eulerian numbers is established. Moreover, we present a grammatical proof of the fact that the joint distribution of the ascent, descent and j-plateau statistics over k-Stirling permutations are symmetric distribution. By using symmetric transformation of grammars, a symmetric expansion of trivariate Schett polynomial is also established.
We prove a positivity result for interpolation polynomials that was conjectured by Knop and Sahi. These polynomials were first introduced by Sahi in the context of the Capelli eigenvalue problem for Jordan algebras, and were later shown to be related to Jack polynomials by Knop-Sahi and Okounkov-Olshanski. The positivity result proved here is an inhomogeneous generalization of Macdonalds positivity conjecture for Jack polynomials. We also formulate and prove the non-symmetric version of the Knop-Sahi conjecture, and in fact we deduce everything from an even stronger positivity result. This last result concerns certain inhomogeneous analogues of ordinary monomials that we call bar monomials. Their positivity involves in an essential way a new partial order on compositions that we call the bar order, and a new operation that we call a glissade.
178 - Toufik Mansour , Yidong Sun 2008
A {em k-generalized Dyck path} of length $n$ is a lattice path from $(0,0)$ to $(n,0)$ in the plane integer lattice $mathbb{Z}timesmathbb{Z}$ consisting of horizontal-steps $(k, 0)$ for a given integer $kgeq 0$, up-steps $(1,1)$, and down-steps $(1,- 1)$, which never passes below the x-axis. The present paper studies three kinds of statistics on $k$-generalized Dyck paths: number of $u$-segments, number of internal $u$-segments and number of $(u,h)$-segments. The Lagrange inversion formula is used to represent the generating function for the number of $k$-generalized Dyck paths according to the statistics as a sum of the partial Bell polynomials or the potential polynomials. Many important special cases are considered leading to several surprising observations. Moreover, enumeration results related to $u$-segments and $(u,h)$-segments are also established, which produce many new combinatorial identities, and specially, two new expressions for Catalan numbers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا