ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurement of Heavy Gauge Bosons in Little Higgs Model with T-parity at ILC

119   0   0.0 ( 0 )
 نشر من قبل Yosuke Takubo
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The Littlest Higgs Model with T-parity is one of the attractive candidates of physics beyond the Standard Model. One of the important predictions of the model is the existence of new heavy gauge bosons, where they acquire mass terms through the breaking of global symmetry necessarily imposed on the model. The determination of the masses are, hence, quite important to test the model. In this paper, the measurement accuracy of the heavy gauge bosons at ILC is eported.



قيم البحث

اقرأ أيضاً

The Littlest Higgs Model with T-parity is one of the attractive candidates of physics beyond the Standard Model. One of the important predictions of the model is the existence of new heavy gauge bosons, where they acquire mass terms through the break ing of global symmetry necessarily imposed on the model. The determination of the masses are, hence, quite important to test the model. In this paper, the measurement accuracy of the heavy gauge bosons at the international linear collider (ILC) is reported.
In the popular littlest Higgs model, T-parity can be broken by Wess-Zumino-Witten (WZW) terms induced by a strongly coupled UV completion. On the other hand, certain models with multiple scalar multiplets (called moose models) permit the implementati on of an exchange symmetry (X-parity) such that it is not broken by the WZW terms. Here we present a concrete and realistic construction of such a model. The little Higgs model with X-Parity is a concrete and realistic implementation of this idea. In this contribution, the properties of the model are reviewed and the collider phenomenology is discussed in some detail. We also present new results on the decay properties and LHC signatures of the light triplet scalars that are predicted by this model.
With high luminosity and energy at the ILC and clean SM backgrounds, the top-charm production at the ILC should have powerful potential to probe new physics. The littlest Higgs model with discrete symmetry named T-parity(LHT) is one of the most promi sing new physics models. In this paper, we study the FC processes $e^+e^-(gammagamma)to tbar{c}$ at the ILC in the LHT model. Our study shows that the LHT model can make a significant contribution to these processes. When the masses of mirror quarks become large, these two processes are accessible at the ILC. So the top-charm production at the ILC provides a unique way to study the properties of the FC couplings in the LHT model and furthermore test the model.
Based on a recent idea by Krohn and Yavin, we construct a little Higgs model with an internal parity that is not broken by anomalous Wess-Zumino-Witten terms. The model is a modification of the minimal moose models by Arkani-Hamed et al. and Cheng an d Low. The new parity prevents large corrections to oblique electroweak parameters and leads to a viable dark matter candidate. It is shown how the complete Standard Model particle content, including quarks and leptons together with their Yukawa couplings, can be implemented. Successful electroweak symmetry breaking and consistency with electroweak precision constraints is achieved for natural paramters choices. A rich spectrum of new particles is predicted at the TeV scale, some of which have sizable production cross sections and striking decay signatures at the LHC.
196 - S. W. Ham , E. J. Yoo , S. K. OH 2008
We study the scalar Higgs sector of the next-to-minimal supersymmetric standard model with an extra U(1), which has two Higgs doublets and a Higgs singlet, in the light leptophobic $Z$ scenario where the extra neutral gauge boson $Z$ does not couple to charged leptons. In this model, we find that the sum of the squared coupling coefficients of the three neutral scalar Higgs bosons to $ZZ$, normalized by the corresponding SM coupling coefficient is noticeably smaller than unity, due to the effect of the extra U(1), for a reasonable parameter space of the model, whereas it is unity in the next-to-minimal supersymmetric standard model. Thus, these two models may be distinguished if the coupling coefficients of neutral scalar Higgs bosons to $ZZ$ are measured at the future International Linear Collider by producing them via the Higgs-strahlung, $ZZ$ fusion, and $WW$ fusion processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا