ترغب بنشر مسار تعليمي؟ اضغط هنا

Higgs bosons of a supersymmetric $U(1)$ model at the ILC

197   0   0.0 ( 0 )
 نشر من قبل Seung Woo Ham
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the scalar Higgs sector of the next-to-minimal supersymmetric standard model with an extra U(1), which has two Higgs doublets and a Higgs singlet, in the light leptophobic $Z$ scenario where the extra neutral gauge boson $Z$ does not couple to charged leptons. In this model, we find that the sum of the squared coupling coefficients of the three neutral scalar Higgs bosons to $ZZ$, normalized by the corresponding SM coupling coefficient is noticeably smaller than unity, due to the effect of the extra U(1), for a reasonable parameter space of the model, whereas it is unity in the next-to-minimal supersymmetric standard model. Thus, these two models may be distinguished if the coupling coefficients of neutral scalar Higgs bosons to $ZZ$ are measured at the future International Linear Collider by producing them via the Higgs-strahlung, $ZZ$ fusion, and $WW$ fusion processes.



قيم البحث

اقرأ أيضاً

499 - S. W. Ham 2008
It is found that CP symmetry may be explicitly broken in the Higgs sector of a supersymmetric $E_6$ model with two extra neutral gauge bosons at the one-loop level. The phenomenology of the model, the Higgs sector in particular, is studied for a reas onable parameter space of the model, in the presence of explicit CP violation at the one-loop level. At least one of the neutral Higgs bosons of the model might be produced via the $WW$ fusion process at the Large Hadron Collider.
The search for heavy Higgs bosons is an essential step in the exploration of the Higgs sector and in probing the Supersymmetric parameter space. This paper discusses the constraints on the M(A) and tan beta parameters derived from the bounds on the d ifferent decay channels of the neutral H and A bosons accessible at the LHC, in the framework of the phenomenological MSSM. The implications from the present LHC results and the expected sensitivity of the 14 TeV data are discussed in terms of the coverage of the [M(A) - tan beta] plane. New channels becoming important at 13 and 14 TeV for low values of tan beta are characterised in terms of their kinematics and the reconstruction strategies. The effect of QCD systematics, SUSY loop effects and decays into pairs of SUSY particles on these constraints are discussed in details.
Left-Right twin Higgs(LRTH) model predicts the existence of a pair of charged Higgs $phi^{pm}$. In this paper, we study the production of the charged Higgs bosons pair $phi^{pm}$ via the process $e^{+}e^{-}to phi^{+}phi^{-}$ at the International Line ar Collider(ILC). The numerical results show that the production rates are at the level of several tens fb, this process can produce the adequate distinct multi-jet final states and the SM background can be efficiently reduced. We also discuss the charged Higgs boson pair production via the process $qbar{q}to phi^{+}phi^{-}$ at the $CERN$ Large Hadron Collider(LHC) and estimate there production rates. We find that, as long as the charged Higgs bosons are not too heavy, they can be abundantly produced at the LHC. The possible signatures of these new particles might be detected at the ILC and LHC experiments.
The Littlest Higgs Model with T-parity is one of the attractive candidates of physics beyond the Standard Model. One of the important predictions of the model is the existence of new heavy gauge bosons, where they acquire mass terms through the break ing of global symmetry necessarily imposed on the model. The determination of the masses are, hence, quite important to test the model. In this paper, the measurement accuracy of the heavy gauge bosons at ILC is eported.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا