ﻻ يوجد ملخص باللغة العربية
In this paper we investigate the von Neumann entropy in the ground state of one-dimensional anyonic systems with the repulsive interaction. Based on the Bethe-ansatz method, the entanglement properties for the arbitrary statistical parameter ($0leqkappaleq1$) are obtained from the one-particle reduced density matrix in the full interacting regime. It is shown that the entanglement entropy increases with the increase in the interaction strength and statistical parameter. The statistic parameter affects the entanglement properties from two aspects: renormalizing of the effective interaction strength and introducing an additional anyonic phase. We also evaluate the entanglement entropy of hard-core anyons for different statistical parameters in order to clarify solely the effect induced by the anyonic phase.
Anyons are exotic quasiparticles living in two dimensions that do not fit into the usual categories of fermions and bosons, but obey a new form of fractional statistics. Following a recent proposal [Phys. Rev. Lett. 98, 150404 (2007)], we present an
Aspects of quantum mechanics on a ring are studied. Either one or two impenetrable barriers are inserted at nodal and non-nodal points to turn the ring into either one or two infinite square wells. In the process, the wave function of a particle can
We provide a complete and exact quantum description of coherent light scattering in a one-dimensional multi-mode transmission line coupled to a two-level emitter. Using recently developed scattering approach we discuss transmission properties, power
We investigate continuous-time quantum walks of two indistinguishable particles [bosons, fermions or hard-core bosons (HCBs)] in one-dimensional lattices with nearest-neighbor interactions. The results for two HCBs are well consistent with the recent
Quantum statistics have a profound impact on the properties of systems composed of identical particles. In this Letter, we demonstrate that the quantum statistics of a pair of identical massive particles can be probed by a direct measurement of the e