ﻻ يوجد ملخص باللغة العربية
Anyons are exotic quasiparticles living in two dimensions that do not fit into the usual categories of fermions and bosons, but obey a new form of fractional statistics. Following a recent proposal [Phys. Rev. Lett. 98, 150404 (2007)], we present an experimental demonstration of the fractional statistics of anyons in the Kitaev spin lattice model using a photonic quantum simulator. We dynamically create the ground state and excited states (which are six-qubit graph states) of the Kitaev model Hamiltonian, and implement the anyonic braiding and fusion operations by single-qubit rotations. A phase shift of $pi$ related to the anyon braiding is observed, confirming the prediction of the fractional statistics of Abelian 1/2-anyons.
A quantum simulator is a restricted class of quantum computer that controls the interactions between quantum bits in a way that can be mapped to certain difficult quantum many-body problems. As more control is exerted over larger numbers of qubits, t
Anyons, particles displaying a fractional exchange statistics intermediate between bosons and fermions, play a central role in the fractional quantum Hall effect and various spin lattice models, and have been proposed for topological quantum computin
We describe a continuous-variable scheme for simulating the Kitaev lattice model and for detecting statistics of abelian anyons. The corresponding quantum optical implementation is solely based upon Gaussian resource states and Gaussian operations, h
Anyons are exotic quasiparticles obeying fractional statistics,whose behavior can be emulated in artificially designed spin systems.Here we present an experimental emulation of creating anyonic excitations in a superconducting circuit that consists o
We operate a superconducting quantum processor consisting of two tunable transmon qubits coupled by a swapping interaction, and equipped with non destructive single-shot readout of the two qubits. With this processor, we run the Grover search algorit