ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic Superstructure and Metal-Insulator Transition in Mn-Substituted Sr3Ru2O7

490   0   0.0 ( 0 )
 نشر من قبل Andrea Damascelli
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a temperature-dependent resonant elastic soft x-ray scattering (REXS) study of the metal-insulator transition in Sr3(Ru1-xMnx)2O7, performed at both Ru and Mn L-edges. Resonant magnetic superstructure reflections, which indicate an incipient instability of the parent compound, are detected below the transition. Based on modelling of the REXS intensity from randomly distributed Mn impurities, we establish the inhomogeneous nature of the metal-insulator transition, with an effective percolation threshold corresponding to an anomalously low x<0.05 Mn substitution.



قيم البحث

اقرأ أيضاً

We present a temperature-dependent x-ray absorption (XAS) and resonant elastic x-ray scattering (REXS) study of the metal-insulator transition (MIT) in Sr3(Ru1-xMnx)2O7. The XAS results reveal that the MIT drives the onset of local antiferromagnetic correlations around the Mn impurities, a precursor of the long-range antiferromagnetism detected by REXS at T_order<T_MIT. This establishes that the MIT is of the Mott-type (electronic correlations) as opposed to Slater-type (magnetic order). While this behavior is induced by Mn impurities, the (1/4,1/4,0) order exists for a wide range of Mn concentrations, and points to an inherent instability of the parent compound.
We discuss Mott insulating and metallic phases of a model with $e_g$ orbital degeneracy to understand physics of Mn perovskite compounds. Quantum Monte Carlo and Lanczos diagonalization results are discussed in this model. To reproduce experimental r esults on charge gap and Jahn-Teller distortions, we show that a synergy between the strong correlation effects and the Jahn-Teller coupling is important. The incoherent charge dynamics and strong charge fluctuations are characteristic of the metallic phase accompanied with critical enhancement of short-ranged orbital correlation near the insulator.
By means of first principles schemes based on magnetically constrained density functional theory and on the band unfolding technique we study the effect of doping on the conducting behaviour of the Lifshitz magnetic insulator NaOsO3. Electron doping is treated realistically within a supercell approach by replacing sodium with magnesium at different concentrations. Our data indicate that by increasing carrier concentration the system is subjected to two types of transition: (i) insulator to bad metal at low doping and low temperature and (ii) bad metal to metal at high doping and/or high-temperature. The predicted doping-induced insulator to metal transition (MIT) has similar traits with the temperature driven MIT reported in the undoped compound. Both develops in an itinerant background and exhibit a coupled electronic and magnetic behaviour characterized by the gradual quenching of the (pseudo)-gap associated with an reduction of the local spin moment. Unlike the temperature-driven MIT, chemical doping induces substantial modifications of the band structure and the MIT cannot be fully described as a Lifshitz process.
66 - Qiang Zhang , Feng Ye , Wei Tian 2017
Bilayered Sr3Ru2O7 is an unusual metamagnetic metal with inherently antiferromagnetic (AFM) and ferromagnetic (FM) fluctuations. Partial substitution of Ru by Mn results in the establishment of metal-insulator transition (MIT) at TMIT and AFM orderin g at TM in Sr3(Ru1-xMnx)2O7. Using elastic neutron scattering we determined the effect of Mn doping on the magnetic structure and in-plane magnetic correlation lengths in Sr3(Ru1-xMnx)2O7 (x = 0.06 and 0.12). With increasing Mn doping (x) from 0.06 to 0.12 or decreasing temperatures for x=0.12, an evolution from an in-plane short-range to long-range double-stripe AFM ground state occurs. For both compounds, the onset of magnetic correlation with an anisotropic behavior coincides with the sharp rise of the electrical resistivity and the specific heat. Since it does not induce measurable lattice distortion, the double-stripe magnetic order with anisotropic spin texture breaks the symmetry from C4v crystal lattice to C2v magnetic sublattice. These observations shed new light on an age-old question of Slater versus Mott-type MIT.
204 - M. Zhu , J. Peng , T. Zou 2018
We present a new type of colossal magnetoresistance (CMR) arising from an anomalous collapse of the Mott insulating state via a modest magnetic field in a bilayer ruthenate, Ti-doped Ca$_3$Ru$_2$O$_7$. Such an insulator-metal transition is accompanie d by changes in both lattice and magnetic structures. Our findings have important implications because a magnetic field usually stabilizes the insulating ground state in a Mott-Hubbard system, thus calling for a deeper theoretical study to reexamine the magnetic field tuning of Mott systems with magnetic and electronic instabilities and spin-lattice-charge coupling. This study further provides a model approach to search for CMR systems other than manganites, such as Mott insulators in the vicinity of the boundary between competing phases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا