ﻻ يوجد ملخص باللغة العربية
There exists a large class of groups of operators acting on Hilbert spaces, where commutativity of group elements can be expressed in the geometric language of symplectic polar spaces embedded in the projective spaces PG($n, p$), $n$ being odd and $p$ a prime. Here, we present a result about commuting and non-commuting group elements based on the existence of so-called Moebius pairs of $n$-simplices, i. e., pairs of $n$-simplices which are emph{mutually inscribed and circumscribed} to each other. For group elements representing an $n$-simplex there is no element outside the centre which commutes with all of them. This allows to express the dimension $n$ of the associated polar space in group theoretic terms. Any Moebius pair of $n$-simplices according to our construction corresponds to two disjoint families of group elements (operators) with the following properties: (i) Any two distinct elements of the same family do not commute. (ii) Each element of one family commutes with all but one of the elements from the other family. A three-qubit generalised Pauli group serves as a non-trivial example to illustrate the theory for $p=2$ and $n=5$.
Linear system games are a generalization of Mermins magic square game introduced by Cleve and Mittal. They show that perfect strategies for linear system games in the tensor-product model of entanglement correspond to finite-dimensional operator solu
In this work we study the structure and cardinality of maximal sets of commuting and anticommuting Paulis in the setting of the abelian Pauli group. We provide necessary and sufficient conditions for anticommuting sets to be maximal, and present an e
Given a uniform, frustration-free family of local Lindbladians defined on a quantum lattice spin system in any spatial dimension, we prove a strong exponential convergence in relative entropy of the system to equilibrium under a condition of spatial
In this paper, first we introduce the notion of a twilled 3-Lie algebra, and construct an $L_infty$-algebra, whose Maurer-Cartan elements give rise to new twilled 3-Lie algebras by twisting. In particular, we recover the Lie $3$-algebra whose Maurer-
Sequential weak measurements of non-commuting observables is not only fundamentally interesting in quantum measurement but also shown potential in various applications. The previous reported methods, however, can only realize limited sequential weak