ﻻ يوجد ملخص باللغة العربية
While the phase of a coherent light field can be precisely known, the phase of the individual photons that create this field, considered individually, cannot. Phase changes within single-photon wave packets, however, have observable effects. In fact, actively controlling the phase of individual photons has been identified as a powerful resource for quantum communication protocols. Here we demonstrate the arbitrary phase control of a single photon. The phase modulation is applied without affecting the photons amplitude profile and is verified via a two-photon quantum interference measurement, which can result in the fermionic spatial behaviour of photon pairs. Combined with previously demonstrated control of a single photons amplitude, frequency, and polarisation, the fully deterministic phase shaping presented here allows for the complete control of single-photon wave packets.
Loading quantum information deterministically onto a quantum node is an important step towards a quantum network. Here, we demonstrate that coherent-state microwave photons, with an optimal temporal waveform, can be efficiently loaded onto a single s
We construct an effective Hamiltonian of interacting bosons, based on scattered radiation off vibrational modes of designed molecular architectures. Making use of the infinite yet countable set of spatial modes representing the scattering of light, w
Path-entangled multi-photon states allow optical phase-sensing beyond the shot-noise limit, provided that an efficient parity measurement can be implemented. Realising this experimentally is technologically demanding, as it requires coincident single
We investigate the multiphoton states generated by high-gain optical parametric amplification of a single injected photon, polarization encoded as a qubit. The experiment configuration exploits the optimal phase-covariant cloning in the high gain reg
We succeeded in measuring phase shift spectra of a microsphere cavity coupled with a tapered fiber using a weak coherent probe light at the single photon level. We utilized a tapered fiber with almost no depolarization and constructed a very stable p