ﻻ يوجد ملخص باللغة العربية
We use a Greens function method to study the temperature-dependent average moment and magnetic phase-transition temperature of the striped antiferromagnetism of LaFeAsO, and other similar compounds, as the parents of FeAs-based superconductors. We consider the nearest and the next-nearest couplings in the FeAs layer, and the nearest coupling for inter-layer spin interaction. The dependence of the transition temperature TN and the zero-temperature average spin on the interaction constants is investigated. We obtain an analytical expression for TN and determine our temperature-dependent average spin from zero temperature to TN in terms of unified self-consistent equations. For LaFeAsO, we obtain a reasonable estimation of the coupling interactions with the experimental transition temperature TN = 138 K. Our results also show that a non-zero antiferromagnetic (AFM) inter-layer coupling is essential for the existence of a non-zero TN, and the many-body AFM fluctuations reduce substantially the low-temperature magnetic moment per Fe towards the experimental value. Our Greens function approach can be used for other FeAs-based parent compounds and these results should be useful to understand the physical properties of FeAs-based superconductors.
Dynamical potentials appear in many advanced electronic-structure methods, including self-energies from many-body perturbation theory, dynamical mean-field theory, electronic-transport formulations, and many embedding approaches. Here, we propose a n
We performed angle-resolved photoemission spectroscopy (ARPES) studies of the electronic structure of the nematic phase in LaFeAsO. Degeneracy breaking between the dxz and dyz hole bands near the {Gamma} and M point is observed in the nematic phase.
We study the electronic structure within a system of phase-decoupled one-dimensional superconductors coexisting with stripe spin and charge density wave order. This system has a nodal Fermi surface (Fermi arc) in the form of a hole pocket and an anti
We present measurements of the thermal expansion coefficient alpha of polycrystalline LaFeAsO1-xFx (x <= 0.1). The magnetic and structural transitions of the samples with x <= 0.04 give rise to large anomalies in alpha(T), while the onset of supercon
The $kappa$-(ET)$_2$X layered conductors (where ET stands for BEDT-TTF) are studied within the dimer model as a function of the diagonal hopping $t^prime$ and Hubbard repulsion $U$. Antiferromagnetism and d-wave superconductivity are investigated at