ﻻ يوجد ملخص باللغة العربية
We present measurements of the thermal expansion coefficient alpha of polycrystalline LaFeAsO1-xFx (x <= 0.1). The magnetic and structural transitions of the samples with x <= 0.04 give rise to large anomalies in alpha(T), while the onset of superconductivity in the crystals with x >= 0.05 is not resolved. Above the structural transition, the thermal expansion coefficient of LaFeAsO is significantly enhanced. This is attributed to fluctuations, which also affect the electrical transport properties of the compound. The complete absence of these fluctuations in the superconducting samples even for x = 0.05 is taken as evidence for an abrupt first-order type of suppression of the structural and magnetic transitions upon F doping.
The fluorine-doped rare-earth iron oxypnictide series SmFeAsO$_{1-x}$F$_x$ (0 $leq x leq$ 0.10) was investigated with high resolution powder x-ray scattering. In agreement with previous studies, the parent compound SmFeAsO exhibits a tetragonal-to-or
Single crystals of LaFeAsO were successfully grown out of KI flux. Temperature dependent electrical resistivity was measured with current flow along the basal plane, rho_perpend(T), as well as with current flow along the crystallographic c-axis, rho_
This paper has been withdrawn by the authors due to errors in the X-ray diffraction data. Other measured data are not affected; however, the errors significantly change the interpretation and conclusions, and thus warrant withdrawal and later resubmission.
Within the phase fluctuation picture for the pseudogap state of a high-$T_{c}$ superconductor, we incorporate the phase fluctuations generated by the classical XY model with the Bogoliubov-de Gennes formalism utilizing a field-theoretical method. Thi
Electrical resistivity measurements under high pressures up to 29 GPa were performed for oxypnictide compound LaFeAsO. We found a pressure-induced superconductivity in LaFeAsO. The maximum value of Tc is 21 K at ~12 GPa. The pressure dependence of th