ﻻ يوجد ملخص باللغة العربية
We report a study in which the effect of defects/impurities, growth process, off-stoichiometry, and presence of impurity phases on the superconducting properties of noncentrosymmetric CePt3Si is analysed by means of the temperature dependence of the magnetic penetration depth. We found that the linear low-temperature response of the penetration depth -indicative of line nodes in this material- is robust regarding sample quality, in contrast to what is observed in unconventional centrosymmetric superconductors with line nodes. We discuss evidence that the broadness of the superconducting transition may be intrinsic, though not implying the existence of a second superconducting transition. The superconducting transition temperature systematically occurs around 0.75 K in our measurements, in agreement with resistivity and ac magnetic susceptibility data but in conflict with specific heat, thermal conductivity and NMR data in which Tc is about 0.5 K. Random defects do not change the linear low-temperature dependence of the penetration depth in the heavy-fermion CePt3Si with line nodes, as they do in unconventional centrosymmetric superconductors with line nodes.
We report the measurements of the $^{29}$Si Knight shift $^{29}K$ on the noncentrosymmetric heavy-fermion compound CePt$_{3}$Si in which antiferromagnetism (AFM) with $T_{rm N}=2.2$ K coexists with superconductivity (SC) with $T_{c}=0.75$ K. Its spin
Combining multiple emergent correlated properties such as superconductivity and magnetism within the topological matrix can have exceptional consequences in garnering new and exotic physics. Here, we study the topological surface states from a noncen
We report on measurements of the temperature dependence of the magnetic penetration depth of a very high quality single crystal of nonmagnetic superconductor LaPt3Si without inversion symmetry. The results are compared with those previously reported
Recent superconducting transition temperatures (Tc) over 100 K for monolayer FeSe on SrTiO3 have renewed interest in the bulk parent compound. In KCl:AlCl3 flux-transport-grown crystals of FeSe0.94Be0.06, FeSe0.97Be0.03 and, for comparison, FeSe, thi
We report on novel antiferromagnetic (AFM) and superconducting (SC) properties of noncentrosymmetric CePt3Si through measurements of the 195Pt nuclear spin-lattice relaxation rate 1/T_1. In the normal state, the temperature (T) dependence of 1/T1 unr