ﻻ يوجد ملخص باللغة العربية
We extend our theory of amorphous packings of hard spheres to binary mixtures and more generally to multicomponent systems. The theory is based on the assumption that amorphous packings produced by typical experimental or numerical protocols can be identified with the infinite pressure limit of long lived metastable glassy states. We test this assumption against numerical and experimental data and show that the theory correctly reproduces the variation with mixture composition of structural observables, such as the total packing fraction and the partial coordination numbers.
Packing spheres efficiently in large dimension $d$ is a particularly difficult optimization problem. In this paper we add an isotropic interaction potential to the pure hard-core repulsion, and show that one can tune it in order to maximize a lower b
An approach to obtain the structural properties of additive binary hard-sphere mixtures is presented. Such an approach, which is a nontrivial generalization of the one recently used for monocomponent hard-sphere fluids [S. Pieprzyk, A. C. Branka, and
The smallest maximum kissing-number Voronoi polyhedron of 3d spheres is the icosahedron and the tetrahedron is the smallest volume that can show up in Delaunay tessalation. No periodic lattice is consistent with either and hence these dense packings
The collective dynamics of liquid Gallium close to the melting point has been studied using Inelastic X-ray Scattering to probe lengthscales smaller than the size of the first coordination shell. %(momentum transfers, $Q$, $>$15 nm$^{-1}$). Although
The structural properties of additive binary hard-sphere mixtures are addressed as a follow-up of a previous paper [S. Pieprzyk et al., Phys. Rev. E 101, 012117 (2020)]. The so-called rational-function approximation method and an approach combining a