ﻻ يوجد ملخص باللغة العربية
Packing spheres efficiently in large dimension $d$ is a particularly difficult optimization problem. In this paper we add an isotropic interaction potential to the pure hard-core repulsion, and show that one can tune it in order to maximize a lower bound on packing density. Our results suggest that exponentially many (in the number of particles) distinct disordered sphere packings can be effectively constructed by this method, up to a packing fraction close to $7, d, 2^{-d}$. The latter is determined by solving the inverse problem of maximizing the dynamical glass transition over the space of the interaction potentials. Our method crucially exploits a recent exact formulation of the thermodynamics and the dynamics of simple liquids in infinite dimension.
We consider a class of random block matrix models in $d$ dimensions, $d ge 1$, motivated by the study of the vibrational density of states (DOS) of soft spheres near the isostatic point. The contact networks of average degree $Z = z_0 + zeta$ are rep
We extend our theory of amorphous packings of hard spheres to binary mixtures and more generally to multicomponent systems. The theory is based on the assumption that amorphous packings produced by typical experimental or numerical protocols can be i
In this paper we numerically investigate the influence of dissipation during particle collisions in an homogeneous turbulent velocity field by coupling a discrete element method to a Lattice-Boltzmann simulation with spectral forcing. We show that ev
Sound attenuation in low temperature amorphous solids originates from their disordered structure. However, its detailed mechanism is still being debated. Here we analyze sound attenuation starting directly from the microscopic equations of motion. We
We show that soft spheres interacting with a linear ramp potential when overcompressed beyond the jamming point fall in an amorphous solid phase which is critical, mechanically marginally stable and share many features with the jamming point itself.