ﻻ يوجد ملخص باللغة العربية
We analyse the formation of ultracold 7Li133Cs molecules in the rovibrational ground state through photoassociation into the B1Pi state, which has recently been reported [J. Deiglmayr et al., Phys. Rev. Lett. 101, 133004 (2008)]. Absolute rate constants for photoassociation at large detunings from the atomic asymptote are determined and are found to be surprisingly large. The photoassociation process is modeled using a full coupled-channel calculation for the continuum state, taking all relevant hyperfine states into account. The enhancement of the photoassociation rate is found to be caused by an `echo of the triplet component in the singlet component of the scattering wave function at the inner turning point of the lowest triplet a3Sigma+ potential. This perturbation can be ascribed to the existence of a broad Feshbach resonance at low scattering energies. Our results elucidate the important role of couplings in the scattering wave function for the formation of deeply bound ground state molecules via photoassociation.
We demonstrate a p$-wave optical Feshbach resonance (OFR) using purely long-range molecular states of a fermionic isotope of ytterbium ^{171}Yb, following the proposition made by K. Goyal et al. [Phys. Rev. A 82, 062704 (2010)]. The p-wave OFR is cle
We present the first observation of ultracold LiCs molecules. The molecules are formed in a two-species magneto-optical trap and detected by two-photon ionization and time-of-flight mass spectrometry. The production rate coefficient is found to be in
We report the first observation of photoassociation to the 2(1)Sigma(g)(+) state of 85Rb2 . We have observed two vibrational levels (v=98, 99) below the 5s1/2+5p1/2 atomic limit and eleven vibrational levels (v=102-112) above it. The photoassociation
We theoretically investigate the control of a magnetic Feshbach resonance using a bound-to-bound molecular transition driven by spatially modulated laser light. Due to the spatially periodic coupling between the ground and excited molecular states, t
We perform photoassociation spectroscopy in an ultracold $^{23}$Na-$^6$Li mixture to study the $c^3Sigma^+$ excited triplet molecular potential. We observe 50 vibrational states and their substructure to an accuracy of 20 MHz, and provide line streng