ترغب بنشر مسار تعليمي؟ اضغط هنا

Coating thermal noise of a finite-size cylindrical mirror

109   0   0.0 ( 0 )
 نشر من قبل Kentaro Somiya
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thermal noise of a mirror is one of the limiting noise sources in the high precision measurement such as gravitational-wave detection, and the modeling of thermal noise has been developed and refined over a decade. In this paper, we present a derivation of coating thermal noise of a finite-size cylindrical mirror based on the fluctuation-dissipation theorem. The result agrees to a previous result with an infinite-size mirror in the limit of large thickness, and also agrees to an independent result based on the mode expansion with a thin-mirror approximation. Our study will play an important role not only to accurately estimate the thermal-noise level of gravitational-wave detectors but also to help analyzing thermal noise in quantum-measurement experiments with lighter mirrors.



قيم البحث

اقرأ أيضاً

Reduction of coating thermal noise is a key issue in precise measurements with an optical interferometer. A good example of such a measurement device is a gravitational-wave detector, where each mirror is coated by a few tens of quarter-wavelength di electric layers to achieve high reflectivity while the thermal-noise level increases with the number of layers. One way to realize the reduction of coating thermal noise, recently proposed by Khalili, is the mechanical separation of the first few layers from the rest so that a major part of the fluctuations contributes only little to the phase shift of the reflected light. Using an etalon, a Fabry-Perot optical resonator of a monolithic cavity, with a few coating layers on the front and significantly more on the back surface is a way to realize such a system without too much complexity, and in this paper we perform a thermal-noise analysis of an etalon using the Fluctuation-dissipation theorem with probes on both sides of a finite-size cylindrical mirror.
57 - Kuan-Nan Lin , Pisin Chen 2021
Production of massless scalar particles by a relativistic semitransparent mirror of finite transverse size in (1+3)D flat spacetime is studied. The finite-size effect on the mode function is compared to the conventional scalar diffraction theory in o ptics. The derived particle spectrum formula is applied to two specific trajectories. One is the gravitational collapse trajectory commonly invoked in (1+1)D perfectly reflecting moving mirror literature, and the other is the plasma mirror trajectory proposed to be realizable in future experiments. We illustrate the finite-size effect on the particle spectrum, which should help to provide a guidance to the expectation in future flying mirror analog black hole experiments.
Optical multilayer coatings of high-reflective mirrors significantly determine the properties of Fabry-Perot resonators. Thermal (Brownian) noise in these coatings produce excess phase noise which can seriously degrade the sensitivity of high-precisi on measurements with these cavities, in particular in laser gravitational-wave antennas (for example project LIGO), where at the current stage it is one of the main limiting factors. We present a method to calculate this effect accurately and analyze different strategies to diminish it by optimizing the coating. Traditionally this noise is calculated as if the beam is reflected from the surface of the mirror fluctuating due to the sums of the fluctuations of each layer. However the beam in fact penetrates a coating and Brownian expansion of the layers leads to dephasing of interference in the coating and consequently to additional change in reflected phase. Fluctuations in the thickness of a layer change the strain in the medium and hence due to photoelastic effect change the refractive index of this layer. This additional effect should be also considered. It is possible to make the noise smaller preserving the reflectivity by changing the total number of layers and thicknesses of high and low refractive ones. We show how this optimized coating may be constructed analytically rather then numerically as before. We also check the possibility to use internal resonant layers and optimized cap layer to decrease the thermal noise.
We present a theoretical study of a nanowire made of a three-dimensional topological insulator. The bulk topological insulator is described by a continuum-model Hamiltonian, and the cylindrical-nanowire geometry is modelled by a hard-wall boundary co ndition. We provide the secular equation for the eigenergies of the systems (both for bulk and surface states) and the analytical form of the energy eigenfunctions. We describe how the surface states of the cylinder are modified by finite-size effects. In particular, we provide a $1/R$ expansion for the energy of the surface states up to second order. The knowledge of the analytical form for the wavefunctions enables the computation of matrix elements of any single-particle operators. In particular, we compute the matrix elements of the optical dipole operator, which describe optical absorption and emission, treating intra- and inter-band transition on the same footing. Selection rules for optical transitions require conservation of linear momentum parallel to the nanowire axis, and a change of $0$ or $pm 1$ in the total-angular-momentum projection parallel to the nanowire axis. The magnitude of the optical-transition matrix elements is strongly affected by the finite radius of the nanowire.
Grating reflectors have been repeatedly discussed to improve the noise performance of metrological applications due to the reduction or absence of any coating material. So far, however, no quantitative estimate on the thermal noise of these reflectiv e structures exists. In this work we present a theoretical calculation of a grating reflectors noise. We further apply it to a proposed 3rd generation gravitational wave detector. Depending on the grating geometry, the grating material and the temperature we obtain a thermal noise decrease by up to a factor of ten compared to conventional dielectric mirrors. Thus the use of grating reflectors can substantially improve the noise performance in metrological applications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا