ﻻ يوجد ملخص باللغة العربية
Thermal noise of a mirror is one of the limiting noise sources in the high precision measurement such as gravitational-wave detection, and the modeling of thermal noise has been developed and refined over a decade. In this paper, we present a derivation of coating thermal noise of a finite-size cylindrical mirror based on the fluctuation-dissipation theorem. The result agrees to a previous result with an infinite-size mirror in the limit of large thickness, and also agrees to an independent result based on the mode expansion with a thin-mirror approximation. Our study will play an important role not only to accurately estimate the thermal-noise level of gravitational-wave detectors but also to help analyzing thermal noise in quantum-measurement experiments with lighter mirrors.
Reduction of coating thermal noise is a key issue in precise measurements with an optical interferometer. A good example of such a measurement device is a gravitational-wave detector, where each mirror is coated by a few tens of quarter-wavelength di
Production of massless scalar particles by a relativistic semitransparent mirror of finite transverse size in (1+3)D flat spacetime is studied. The finite-size effect on the mode function is compared to the conventional scalar diffraction theory in o
Optical multilayer coatings of high-reflective mirrors significantly determine the properties of Fabry-Perot resonators. Thermal (Brownian) noise in these coatings produce excess phase noise which can seriously degrade the sensitivity of high-precisi
We present a theoretical study of a nanowire made of a three-dimensional topological insulator. The bulk topological insulator is described by a continuum-model Hamiltonian, and the cylindrical-nanowire geometry is modelled by a hard-wall boundary co
Grating reflectors have been repeatedly discussed to improve the noise performance of metrological applications due to the reduction or absence of any coating material. So far, however, no quantitative estimate on the thermal noise of these reflectiv