ترغب بنشر مسار تعليمي؟ اضغط هنا

Finite-size effects in cylindrical topological insulators

213   0   0.0 ( 0 )
 نشر من قبل Michele Governale
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a theoretical study of a nanowire made of a three-dimensional topological insulator. The bulk topological insulator is described by a continuum-model Hamiltonian, and the cylindrical-nanowire geometry is modelled by a hard-wall boundary condition. We provide the secular equation for the eigenergies of the systems (both for bulk and surface states) and the analytical form of the energy eigenfunctions. We describe how the surface states of the cylinder are modified by finite-size effects. In particular, we provide a $1/R$ expansion for the energy of the surface states up to second order. The knowledge of the analytical form for the wavefunctions enables the computation of matrix elements of any single-particle operators. In particular, we compute the matrix elements of the optical dipole operator, which describe optical absorption and emission, treating intra- and inter-band transition on the same footing. Selection rules for optical transitions require conservation of linear momentum parallel to the nanowire axis, and a change of $0$ or $pm 1$ in the total-angular-momentum projection parallel to the nanowire axis. The magnitude of the optical-transition matrix elements is strongly affected by the finite radius of the nanowire.



قيم البحث

اقرأ أيضاً

The non-trivialness of a topological insulator (TI) is characterized either by a bulk topological invariant or by the existence of a protected metallic surface state. Yet, in realistic samples of finite size this non-trivialness does not necessarily guarantee the gaplessness of the surface state. Depending on the geometry and on the topological indices, a finite-size energy gap of different nature can appear, and correspondingly, exhibits various scaling behaviors of the gap. The spin-to-surface locking provides one of such gap-opening mechanisms, resulting in a power-law scaling of the energy gap. Weak and strong TIs show different degrees of sensitivity to the geometry of the sample. As a noteworthy example, a strong TI nanowire of a rectangular prism shape is shown to be more gapped than that of a weak TI of precisely the same geometry.
We investigate the electrical conductivity and thermoelectric effects in topological crystalline insulators in the presence of short- and long-range impurity interactions. We employ the generalized Boltzmann formalism for anisotropic Fermi surface sy stems. The conductivity exhibits a local minimum as doping varies owing to the Van Hove singularity in the density of states originated from the saddle point in the surface states band structure. Suppression of the interband scattering of the charge carriers at high-energy Dirac points results in a maximum in the electrical conductivity. Whenever the Fermi level passes an extremum in the conductivity, Seebeck coefficient changes sign. In addition, it is revealed that profound thermoelectric effects can be attained around these extrema points.
In a blueprint for topological quantum electronics, edge state transport in a topological insulator material can be controlled by employing a gate-induced topological quantum phase transition. While finite-size effects have been widely studied in 2D- Xenes, less attention has been devoted to finite-size effects on the gate-induced topological switching in spin-orbit coupled 2D-Xene nanoribbons. Here, by studying width dependence of electronic properties via a tight binding model, we demonstrate that finite-size effects can be used to optimize both the spin-orbit interaction induced barrier in the bulk and the gate-controlled quantized conductance on the edges of zigzag-Xene nanoribbons. The critical electric field required for switching between gapless and gapped edge states reduces as the width decreases, without any fundamental lower bound. This size dependence of the threshold voltage stems from a unique feature of zigzag-Xene nanoribbons: width and momentum dependent tunability of the gate-induced coupling between overlapping spin-filtered chiral states on the two edges. Furthermore, when the width of zigzag-Xene nanoribbons is smaller than a critical limit, topological switching between edge states can be attained without bulk band gap closing and reopening. This is primarily due to the quantum confinement effect on the bulk band spectrum which increases nontrivial bulk band gap with decrease in width. Such reduction in threshold voltage accompanied by enhancement in bulk band gap overturns the conventional wisdom of utilizing wide channel and narrow gap semiconductors for reducing threshold voltage in standard field effect transistor analysis and paves the way towards next-generation low-voltage topological quantum devices.
We theoretically study the finite-size effects in the dynamical response of a quantum anomalous Hall insulator in the disk geometry. Semi-analytic and numerical results are obtained for the wavefunctions and energies of the disk within a continuum Di rac Hamiltonian description subject to a topological infinite mass boundary condition. Using the Kubo formula, we obtain the frequency-dependent longitudinal and Hall conductivities and find that optical transitions between edge states contribute dominantly to the real part of the dynamic Hall conductivity for frequency values both within and beyond the bulk band gap. We also find that the topological infinite mass boundary condition changes the low-frequency Hall conductivity to $ e^2/h $ in a finite-size system from the well-known value $ e^2/2h $ in an extended system. The magneto-optical Faraday rotation is then studied as a function of frequency for the setup of a quantum anomalous Hall insulator mounted on a dielectric substrate, showing both finite-size effects of the disk and Fabry-Perot resonances due to the substrate. Our work demonstrates the important role played by the boundary condition in the topological properties of finite-size systems through its effects on the electronic wavefunctions.
As a model for describing finite-size effects in topological insulator thin films, we study a one-dimensional (1D) effective model of a topological insulator (TI). Using this effective 1D model, we reveal the precise correspondence between the spatia l profile of the surface wave function, and the dependence of the finite-size energy gap on the thickness (Lx) of the film. We solve the boundary problem both in the semi-infinite and slab geometries to show that the Lx-dependence of the size gap is a direct measure of the amplitude of the surface wave function at the depth of x=Lx+1 [here, the boundary condition is chosen such that the wave function vanishes at x=0]. Depending on the parameters, the edge state function shows either a damped oscillation (in the TI-oscillatory region of FIG. 2, or becomes overdamped (ibid., in the TI-overdamped phase). In the original 3D bulk TI, an asymmetry in the spectrum of valence and conduction bands is omnipresent. Here, we demonstrate by tuning this asymmetry one can drive a crossover from the TI-oscillatory to the TI-overdamped phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا