ﻻ يوجد ملخص باللغة العربية
We present a theoretical study of a nanowire made of a three-dimensional topological insulator. The bulk topological insulator is described by a continuum-model Hamiltonian, and the cylindrical-nanowire geometry is modelled by a hard-wall boundary condition. We provide the secular equation for the eigenergies of the systems (both for bulk and surface states) and the analytical form of the energy eigenfunctions. We describe how the surface states of the cylinder are modified by finite-size effects. In particular, we provide a $1/R$ expansion for the energy of the surface states up to second order. The knowledge of the analytical form for the wavefunctions enables the computation of matrix elements of any single-particle operators. In particular, we compute the matrix elements of the optical dipole operator, which describe optical absorption and emission, treating intra- and inter-band transition on the same footing. Selection rules for optical transitions require conservation of linear momentum parallel to the nanowire axis, and a change of $0$ or $pm 1$ in the total-angular-momentum projection parallel to the nanowire axis. The magnitude of the optical-transition matrix elements is strongly affected by the finite radius of the nanowire.
The non-trivialness of a topological insulator (TI) is characterized either by a bulk topological invariant or by the existence of a protected metallic surface state. Yet, in realistic samples of finite size this non-trivialness does not necessarily
We investigate the electrical conductivity and thermoelectric effects in topological crystalline insulators in the presence of short- and long-range impurity interactions. We employ the generalized Boltzmann formalism for anisotropic Fermi surface sy
In a blueprint for topological quantum electronics, edge state transport in a topological insulator material can be controlled by employing a gate-induced topological quantum phase transition. While finite-size effects have been widely studied in 2D-
We theoretically study the finite-size effects in the dynamical response of a quantum anomalous Hall insulator in the disk geometry. Semi-analytic and numerical results are obtained for the wavefunctions and energies of the disk within a continuum Di
As a model for describing finite-size effects in topological insulator thin films, we study a one-dimensional (1D) effective model of a topological insulator (TI). Using this effective 1D model, we reveal the precise correspondence between the spatia