ﻻ يوجد ملخص باللغة العربية
Using a Luttinger-liquid approach we study the quantum fluctuations of a Bose-Josephson junction, consisting of a Bose gas confined to a quasi one-dimensional ring trap which contains a localized repulsive potential barrier. For an infinite barrier we study the one-particle and two-particle static correlation functions. For the one-body density-matrix we obtain different power-law decays depending on the location of the probe points with respect to the position of the barrier. This quasi-long range order can be experimentally probed in principle using an interference measurement. The corresponding momentum distribution at small momenta is also shown to be affected by the presence of the barrier and to display the universal power-law behavior expected for an interacting 1D fluid. We also evaluate the particle density profile, and by comparing with the exact results in the Tonks-Girardeau limit we fix the nonuniversal parameters of the Luttinger-liquid theory. Once the parameters are determined from one-body properties, we evaluate the density-density correlation function, finding a remarkable agreement between the Luttinger liquid predictions and the exact result in the Tonks-Girardeau limit, even at the length scale of the Friedel-like oscillations which characterize the behavior of the density-density correlation function at intermediate distance. Finally, for a large but finite barrier we use the one-body correlation function to estimate the effect of quantum fluctuations on the renormalization of the barrier height, finding a reduction of the effective Josephson coupling energy, which depends on the length of the ring and on the interaction strength.
We examine the phase diagram of an ordered one-dimensional Josephson array of small grains. The average grain charge in such a system can be tuned by means of gate voltage. At small grain-to-grain conductance, this system is strongly correlated becau
Phase correlations, density fluctuations and three-body loss rates are relevant for many experiments in quasi one-dimensional geometries. Extended mean-field theory is used to evaluate correlation functions up to third order for a quasi one-dimension
We report the realization of a ballistic Josephson interferometer. The interferometer is made by a quantum ring etched in a nanofabricated two-dimensional electron gas confined in an InAs-based heterostructure laterally contacted to superconducting n
A time-reversal invariant topological superconductivity is suggested to be realized in a quasi-one dimensional structure on a plane, which is fabricated by filling the superconducting materials into the periodic channel of dielectric matrices like ze
With the help of the numerical renormalization group method, we theoretically investigate the Josephson phase transition in a parallel junction with one quantum dot embedded in each arm. It is found that in the cases of uniform dot levels and dot-sup