ﻻ يوجد ملخص باللغة العربية
With the help of the numerical renormalization group method, we theoretically investigate the Josephson phase transition in a parallel junction with one quantum dot embedded in each arm. It is found that in the cases of uniform dot levels and dot-superconductor couplings, the Josephson phase transition will be suppressed. This is manifested as the fact that with the enhancement of the electron correlation, the supercurrent only arrives at its $pi$ phase but cannot enter its $pi$ phase. Moreover, when the dot levels are detuned, one $pi$-phase island appears in the phase diagram. Such a result is attributed to the nonlocal motion of the Cooper pair in this structure. We believe that this work can be helpful in understanding the Josephson phase transition modified by the electron correlation and quantum interference.
We investigate the Josephson effect in one triple-terminal junction with embedded parallel-coupled double quantum dots. It is found that the inter-superconductor supercurrent has opportunities to oscillate in $4pi$ period, with the adjustment of the
We report fabrication and measurement of a device where closely-placed two parallel InAs nanowires (NWs) are contacted by source and drain normal metal electrodes. Established technique includes selective deposition of double nanowires onto a previou
We study the critical Josephson current flowing through a double quantum dot weakly coupled to two superconducting leads. We use analytical as well as numerical methods to investigate this setup in the limit of small and large bandwidth leads in all
We investigate dynamical transport aspects of a combined nanomechanical-superconducting device in which Cooper pair tunneling interfere with the mechanical motion of a vibrating molecular quantum dot embedded in a Josephson junction. Six different re
We study the zero-temperature phase diagram of a dissipationless and disorder-free Josephson junction chain. Namely, we determine the critical Josephson energy below which the chain becomes insulating, as a function of the ratio of two capacitances: