ترغب بنشر مسار تعليمي؟ اضغط هنا

Comment on BCS superconductivity of Dirac fermions in graphene layers

195   0   0.0 ( 0 )
 نشر من قبل Bruno Uchoa
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Comment on BCS superconductivity of Dirac fermions in graphene layers by N. B. Kopnin and E. B. Sonin [arXiv:0803.3772; Phys. Rev. Lett. 100, 246808 (2008)].



قيم البحث

اقرأ أيضاً

We numerically study the interplay between superconductivity and disorder on the graphene honeycomb lattice with on-site Hubbard attractive interactions U using a spatially inhomogeneous self-consistent Bogoliubov-de Gennes (BdG) approach. In the abs ence of disorder there are two phases at charge neutrality. Below a critical value Uc for attractive interactions there is a Dirac semimetal phase and above it there is a superconducting phase. We add scalar potential disorder to the system, while remaining at charge neutrality on average. Numerical solution of the BdG equations suggests that while in the strong attraction regime (U > Uc) disorder has the usual effect of suppressing superconductivity, in the weak attraction regime (U < Uc) weak disorder enhances superconductivity. In the weak attraction regime, disorder that is too strong eventually suppresses superconductivity, i.e., there is an optimal disorder strength that maximizes the critical temperature Tc. Our numerical results also suggest that in the weakly disordered regime, mesoscopic inhomogeneities enhance superconductivity significantly more than what is predicted by a spatially uniform mean-field theory a` la Abrikosov-Gorkov. In this regime, superconductivity consists of rare phase-coherent superconducting islands. We also study the enhancement of the superconducting proximity effect by disorder and mesoscopic inhomogeneities, and obtain typical spatial plots of the tunneling density of states and the superfluid susceptibility that can be directly compared to scanning tunneling miscroscopy (STM) experiments on proximity-induced superconductivity in graphene.
92 - A. Komnik , M. Thorwart 2016
We study the impact of a time-dependent external driving of the lattice phonons in a minimal model of a BCS superconductor. Upon evaluating the driving-induced vertex corrections of the phonon-mediated electron-electron interaction, we show that para metric phonon driving can be used to elevate the critical temperature $T_c$, while a dipolar phonon drive has no effect. We provide simple analytic expressions for the enhancement factor of $T_c$. Furthermore, a mean-field analysis of a nonlinear phonon-phonon interaction also shows that phonon anharmonicities further amplify $T_c$. Our results hold universally for the large class of normal BCS superconductors.
The effects of static electric fields on the superconducting state are studied within a relativistic extension of the BCS theory of superconductivity.
In a recent preprint [arXiv:1803.04118v2] Chern and Barros report numerical simulations of the mean-field interaction quench dynamics, $U_ito U_f$, of the attractive Hubbard model that confirm our earlier prediction [Europhys. Lett. 85, 20004 (2008), arXiv:0805.2798] of spontaneous eruption of spatial inhomogeneities in the post-quench state with periodically oscillating superconducting order. Chern and Barros attribute this instability with respect to spatial fluctuations to the large magnitude of the final Hubbard coupling $U_f$. We point out that this interpretation is inaccurate and discuss further work necessary to numerically verify the mechanism of the instability and the nature of the steady state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا