ترغب بنشر مسار تعليمي؟ اضغط هنا

Automatic Construction of Lightweight Domain Ontologies for Chemical Engineering Risk Management

557   0   0.0 ( 0 )
 نشر من قبل Wilson Wong
 تاريخ النشر 2008
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The need for domain ontologies in mission critical applications such as risk management and hazard identification is becoming more and more pressing. Most research on ontology learning conducted in the academia remains unrealistic for real-world applications. One of the main problems is the dependence on non-incremental, rare knowledge and textual resources, and manually-crafted patterns and rules. This paper reports work in progress aiming to address such undesirable dependencies during ontology construction. Initial experiments using a working prototype of the system revealed promising potentials in automatically constructing high-quality domain ontologies using real-world texts.



قيم البحث

اقرأ أيضاً

We investigate the problem whether two ALC ontologies are indistinguishable (or inseparable) by means of queries in a given signature, which is fundamental for ontology engineering tasks such as ontology versioning, modularisation, update, and forget ting. We consider both knowledge base (KB) and TBox inseparability. For KBs, we give model-theoretic criteria in terms of (finite partial) homomorphisms and products and prove that this problem is undecidable for conjunctive queries (CQs), but 2ExpTime-complete for unions of CQs (UCQs). The same results hold if (U)CQs are replaced by rooted (U)CQs, where every variable is connected to an answer variable. We also show that inseparability by CQs is still undecidable if one KB is given in the lightweight DL EL and if no restrictions are imposed on the signature of the CQs. We also consider the problem whether two ALC TBoxes give the same answers to any query over any ABox in a given signature and show that, for CQs, this problem is undecidable, too. We then develop model-theoretic criteria for Horn-ALC TBoxes and show using tree automata that, in contrast, inseparability becomes decidable and 2ExpTime-complete, even ExpTime-complete when restricted to (unions of) rooted CQs.
89 - Shengcai Liu , Ke Tang , Xin Yao 2018
Simultaneously utilizing several complementary solvers is a simple yet effective strategy for solving computationally hard problems. However, manually building such solver portfolios typically requires considerable domain knowledge and plenty of huma n effort. As an alternative, automatic construction of parallel portfolios (ACPP) aims at automatically building effective parallel portfolios based on a given problem instance set and a given rich design space. One promising way to solve the ACPP problem is to explicitly group the instances into different subsets and promote a component solver to handle each of them.This paper investigates solving ACPP from this perspective, and especially studies how to obtain a good instance grouping.The experimental results showed that the parallel portfolios constructed by the proposed method could achieve consistently superior performances to the ones constructed by the state-of-the-art ACPP methods,and could even rival sophisticated hand-designed parallel solvers.
Ontologies usually suffer from the semantic heterogeneity when simultaneously used in information sharing, merging, integrating and querying processes. Therefore, the similarity identification between ontologies being used becomes a mandatory task fo r all these processes to handle the problem of semantic heterogeneity. In this paper, we propose an efficient technique for similarity measurement between two ontologies. The proposed technique identifies all candidate pairs of similar concepts without omitting any similar pair. The proposed technique can be used in different types of operations on ontologies such as merging, mapping and aligning. By analyzing its results a reasonable improvement in terms of completeness, correctness and overall quality of the results has been found.
The Pareto model is very popular in risk management, since simple analytical formulas can be derived for financial downside risk measures (Value-at-Risk, Expected Shortfall) or reinsurance premiums and related quantities (Large Claim Index, Return Pe riod). Nevertheless, in practice, distributions are (strictly) Pareto only in the tails, above (possible very) large threshold. Therefore, it could be interesting to take into account second order behavior to provide a better fit. In this article, we present how to go from a strict Pareto model to Pareto-type distributions. We discuss inference, and derive formulas for various measures and indices, and finally provide applications on insurance losses and financial risks.
Pre-sales customer service is of importance to E-commerce platforms as it contributes to optimizing customers buying process. To better serve users, we propose AliMe KG, a domain knowledge graph in E-commerce that captures user problems, points of in terests (POI), item information and relations thereof. It helps to understand user needs, answer pre-sales questions and generate explanation texts. We applied AliMe KG to several online business scenarios such as shopping guide, question answering over properties and recommendation reason generation, and gained positive results. In the paper, we systematically introduce how we construct domain knowledge graph from free text, and demonstrate its business value with several applications. Our experience shows that mining structured knowledge from free text in vertical domain is practicable, and can be of substantial value in industrial settings.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا