ﻻ يوجد ملخص باللغة العربية
We investigate the problem whether two ALC ontologies are indistinguishable (or inseparable) by means of queries in a given signature, which is fundamental for ontology engineering tasks such as ontology versioning, modularisation, update, and forgetting. We consider both knowledge base (KB) and TBox inseparability. For KBs, we give model-theoretic criteria in terms of (finite partial) homomorphisms and products and prove that this problem is undecidable for conjunctive queries (CQs), but 2ExpTime-complete for unions of CQs (UCQs). The same results hold if (U)CQs are replaced by rooted (U)CQs, where every variable is connected to an answer variable. We also show that inseparability by CQs is still undecidable if one KB is given in the lightweight DL EL and if no restrictions are imposed on the signature of the CQs. We also consider the problem whether two ALC TBoxes give the same answers to any query over any ABox in a given signature and show that, for CQs, this problem is undecidable, too. We then develop model-theoretic criteria for Horn-ALC TBoxes and show using tree automata that, in contrast, inseparability becomes decidable and 2ExpTime-complete, even ExpTime-complete when restricted to (unions of) rooted CQs.
The question whether an ontology can safely be replaced by another, possibly simpler, one is fundamental for many ontology engineering and maintenance tasks. It underpins, for example, ontology versioning, ontology modularization, forgetting, and kno
The use of preferences in query answering, both in traditional databases and in ontology-based data access, has recently received much attention, due to its many real-world applications. In this paper, we tackle the problem of top-k query answering i
Approaches based on refinement operators have been successfully applied to class expression learning on RDF knowledge graphs. These approaches often need to explore a large number of concepts to find adequate hypotheses. This need arguably stems from
Ontologies usually suffer from the semantic heterogeneity when simultaneously used in information sharing, merging, integrating and querying processes. Therefore, the similarity identification between ontologies being used becomes a mandatory task fo
The need for domain ontologies in mission critical applications such as risk management and hazard identification is becoming more and more pressing. Most research on ontology learning conducted in the academia remains unrealistic for real-world appl