ترغب بنشر مسار تعليمي؟ اضغط هنا

Query Inseparability for ALC Ontologies

77   0   0.0 ( 0 )
 نشر من قبل Carsten Lutz
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate the problem whether two ALC ontologies are indistinguishable (or inseparable) by means of queries in a given signature, which is fundamental for ontology engineering tasks such as ontology versioning, modularisation, update, and forgetting. We consider both knowledge base (KB) and TBox inseparability. For KBs, we give model-theoretic criteria in terms of (finite partial) homomorphisms and products and prove that this problem is undecidable for conjunctive queries (CQs), but 2ExpTime-complete for unions of CQs (UCQs). The same results hold if (U)CQs are replaced by rooted (U)CQs, where every variable is connected to an answer variable. We also show that inseparability by CQs is still undecidable if one KB is given in the lightweight DL EL and if no restrictions are imposed on the signature of the CQs. We also consider the problem whether two ALC TBoxes give the same answers to any query over any ABox in a given signature and show that, for CQs, this problem is undecidable, too. We then develop model-theoretic criteria for Horn-ALC TBoxes and show using tree automata that, in contrast, inseparability becomes decidable and 2ExpTime-complete, even ExpTime-complete when restricted to (unions of) rooted CQs.



قيم البحث

اقرأ أيضاً

The question whether an ontology can safely be replaced by another, possibly simpler, one is fundamental for many ontology engineering and maintenance tasks. It underpins, for example, ontology versioning, ontology modularization, forgetting, and kno wledge exchange. What safe replacement means depends on the intended application of the ontology. If, for example, it is used to query data, then the answers to any relevant ontology-mediated query should be the same over any relevant data set; if, in contrast, the ontology is used for conceptual reasoning, then the entailed subsumptions between concept expressions should coincide. This gives rise to different notions of ontology inseparability such as query inseparability and concept inseparability, which generalize corresponding notions of conservative extensions. We survey results on various notions of inseparability in the context of description logic ontologies, discussing their applications, useful model-theoretic characterizations, algorithms for determining whether two ontologies are inseparable (and, sometimes, for computing the difference between them if they are not), and the computational complexity of this problem.
The use of preferences in query answering, both in traditional databases and in ontology-based data access, has recently received much attention, due to its many real-world applications. In this paper, we tackle the problem of top-k query answering i n Datalog+/- ontologies subject to the querying users preferences and a collection of (subjective) reports of other users. Here, each report consists of scores for a list of features, its authors preferences among the features, as well as other information. Theses pieces of information of every report are then combined, along with the querying users preferences and his/her trust into each report, to rank the query results. We present two alternative such rankings, along with algorithms for top-k (atomic) query answering under these rankings. We also show that, under suitable assumptions, these algorithms run in polynomial time in the data complexity. We finally present more general reports, which are associated with sets of atoms rather than single atoms.
Approaches based on refinement operators have been successfully applied to class expression learning on RDF knowledge graphs. These approaches often need to explore a large number of concepts to find adequate hypotheses. This need arguably stems from current approaches relying on myopic heuristic functions to guide their search through an infinite concept space. In turn, deep reinforcement learning provides effective means to address myopia by estimating how much discounted cumulated future reward states promise. In this work, we leverage deep reinforcement learning to accelerate the learning of concepts in $mathcal{ALC}$ by proposing DRILL -- a novel class expression learning approach that uses a convolutional deep Q-learning model to steer its search. By virtue of its architecture, DRILL is able to compute the expected discounted cumulated future reward of more than $10^3$ class expressions in a second on standard hardware. We evaluate DRILL on four benchmark datasets against state-of-the-art approaches. Our results suggest that DRILL converges to goal states at least 2.7$times$ faster than state-of-the-art models on all benchmark datasets. We provide an open-source implementation of our approach, including training and evaluation scripts as well as pre-trained models.
Ontologies usually suffer from the semantic heterogeneity when simultaneously used in information sharing, merging, integrating and querying processes. Therefore, the similarity identification between ontologies being used becomes a mandatory task fo r all these processes to handle the problem of semantic heterogeneity. In this paper, we propose an efficient technique for similarity measurement between two ontologies. The proposed technique identifies all candidate pairs of similar concepts without omitting any similar pair. The proposed technique can be used in different types of operations on ontologies such as merging, mapping and aligning. By analyzing its results a reasonable improvement in terms of completeness, correctness and overall quality of the results has been found.
The need for domain ontologies in mission critical applications such as risk management and hazard identification is becoming more and more pressing. Most research on ontology learning conducted in the academia remains unrealistic for real-world appl ications. One of the main problems is the dependence on non-incremental, rare knowledge and textual resources, and manually-crafted patterns and rules. This paper reports work in progress aiming to address such undesirable dependencies during ontology construction. Initial experiments using a working prototype of the system revealed promising potentials in automatically constructing high-quality domain ontologies using real-world texts.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا