ﻻ يوجد ملخص باللغة العربية
We consider a multi-round auction setting motivated by pay-per-click auctions for Internet advertising. In each round the auctioneer selects an advertiser and shows her ad, which is then either clicked or not. An advertiser derives value from clicks; the value of a click is her private information. Initially, neither the auctioneer nor the advertisers have any information about the likelihood of clicks on the advertisements. The auctioneers goal is to design a (dominant strategies) truthful mechanism that (approximately) maximizes the social welfare. If the advertisers bid their true private values, our problem is equivalent to the multi-armed bandit problem, and thus can be viewed as a strategic version of the latter. In particular, for both problems the quality of an algorithm can be characterized by regret, the difference in social welfare between the algorithm and the benchmark which always selects the same best advertisement. We investigate how the design of multi-armed bandit algorithms is affected by the restriction that the resulting mechanism must be truthful. We find that truthful mechanisms have certain strong structural properties -- essentially, they must separate exploration from exploitation -- and they incur much higher regret than the optimal multi-armed bandit algorithms. Moreover, we provide a truthful mechanism which (essentially) matches our lower bound on regret.
In this paper, we consider several finite-horizon Bayesian multi-armed bandit problems with side constraints which are computationally intractable (NP-Hard) and for which no optimal (or near optimal) algorithms are known to exist with sub-exponential
We analyze statistical discrimination in hiring markets using a multi-armed bandit model. Myopic firms face workers arriving with heterogeneous observable characteristics. The association between the workers skill and characteristics is unknown ex an
The early sections of this paper present an analysis of a Markov decision model that is known as the multi-armed bandit under the assumption that the utility function of the decision maker is either linear or exponential. The analysis includes effici
Crowd sensing is a new paradigm which leverages the pervasive smartphones to efficiently collect and upload sensing data, enabling numerous novel applications. To achieve good service quality for a crowd sensing application, incentive mechanisms are
Crowdsourcing markets have emerged as a popular platform for matching available workers with tasks to complete. The payment for a particular task is typically set by the tasks requester, and may be adjusted based on the quality of the completed work,