ﻻ يوجد ملخص باللغة العربية
Crowdsourcing markets have emerged as a popular platform for matching available workers with tasks to complete. The payment for a particular task is typically set by the tasks requester, and may be adjusted based on the quality of the completed work, for example, through the use of bonus payments. In this paper, we study the requesters problem of dynamically adjusting quality-contingent payments for tasks. We consider a multi-round version of the well-known principal-agent model, whereby in each round a worker makes a strategic choice of the effort level which is not directly observable by the requester. In particular, our formulation significantly generalizes the budget-free online task pricing problems studied in prior work. We treat this problem as a multi-armed bandit problem, with each arm representing a potential contract. To cope with the large (and in fact, infinite) number of arms, we propose a new algorithm, AgnosticZooming, which discretizes the contract space into a finite number of regions, effectively treating each region as a single arm. This discretization is adaptively refined, so that more promising regions of the contract space are eventually discretized more finely. We analyze this algorithm, showing that it achieves regret sublinear in the time horizon and substantially improves over non-adaptive discretization (which is the only competing approach in the literature). Our results advance the state of art on several different topics: the theory of crowdsourcing markets, principal-agent problems, multi-armed bandits, and dynamic pricing.
The restless bandit problem is one of the most well-studied generalizations of the celebrated stochastic multi-armed bandit problem in decision theory. In its ultimate generality, the restless bandit problem is known to be PSPACE-Hard to approximate
In this paper, we consider several finite-horizon Bayesian multi-armed bandit problems with side constraints which are computationally intractable (NP-Hard) and for which no optimal (or near optimal) algorithms are known to exist with sub-exponential
We consider a multi-round auction setting motivated by pay-per-click auctions for Internet advertising. In each round the auctioneer selects an advertiser and shows her ad, which is then either clicked or not. An advertiser derives value from clicks;
We study a principal-agent problem with one principal and multiple agents. The principal provides an exit contract which is identical to all agents, then each agent chooses her/his optimal exit time with the given contract. The principal looks for an
In this paper we study the fundamental problems of maximizing a continuous non-monotone submodular function over the hypercube, both with and without coordinate-wise concavity. This family of optimization problems has several applications in machine