ﻻ يوجد ملخص باللغة العربية
We compute dilepton invariant mass spectra from the decays of rho mesons produced by photon reactions off nuclei. Our calculations employ a realistic model for the rho photoproduction amplitude on the nucleon which provides fair agreement with measured cross sections. Medium effects are implemented via an earlier constructed rho propagator based on hadronic many-body theory. At incoming photon energies of 1.5 -3 GeV as used by the CLAS experiment at JLAB, the average density probed for iron targets is estimated at about half saturation density. At the pertinent rho-meson 3-momenta the predicted medium effects on the rho propagator are rather moderate. The resulting dilepton spectra approximately agree with recent CLAS data.
We investigate $phi$ meson photoproduction on the nucleon and the uclide[4]{He} targets within a dynamical model approach based on a Hamiltonian which describes the production mechanisms by the Pomeron-exchange, meson-exchanges, $phi$ radiations, an
Using the Gribov-Glauber model for photon-nucleus scattering and a generalization of the vector meson dominance model for the hadronic structure of the photon, we make predictions for the cross section of incoherent $rho$ photoproduction in Pb-Pb ult
We shed light upon the eta mass in nuclear matter in the context of partial restoration of chiral symmetry, pointing out that the U_{A}(1) anomaly effects causes the eta-eta mass difference necessarily through the chiral symmetry breaking. As a conse
In-medium modification of the eta mass is discussed in the context of partial restoration of chiral symmetry in nuclear medium. We emphasize that the U_A(1) anomaly effects causes the eta-eta mass difference necessarily through the chiral symmetry br
We discuss the effect of changes in meson properties in a nuclear medium on physical observables, notably, $J/Psi$ dissociation on pion and $rho$ meson comovers in relativistic heavy ion collisions, and the prediction of the $omega$-, $eta$- and $eta$-nuclear bound states.