ﻻ يوجد ملخص باللغة العربية
We report a Fe Kbeta x-ray emission spectroscopy study of local magnetic moments in the rare-earth doped iron pnictide Ca_{1-x}RE_xFe_2As_2 (RE=La, Pr, and Nd). In all samples studied the size of the Fe local moment is found to decrease significantly with temperature and goes from ~0.9 mu_B at T = 300 K to ~0.45 mu_B at T = 70 K. In the collapsed tetragonal (cT) phase of Nd- and Pr-doped samples (T<70K) the local moment is quenched, while the moment remains unchanged for the La-doped sample, which does not show lattice collapse. Our results show that Ca_{1-x}RE_xFe_2As_2 (RE= Pr and Nd) exhibits a spin-state transition and provide direct evidence for a non-magnetic Fe^{2+} ion in the cT-phase, as predicted by Yildirim. We argue that the gradual change of the the spin-state over a wide temperature range reveals the importance of multiorbital physics, in particular the competition between the crystal field split Fe 3d orbitals and the Hunds rule coupling.
The phase diagrams of EuFe$_{2-x}$Co$_x$As$_2$ $(0 leq x leq 0.4)$ and EuFe$_2$As$_{2-y}$P$_y$ $(0 leq y leq 0.43)$ are investigated by Eu$^{2+}$ electron spin resonance (ESR) in single crystals. From the temperature dependence of the linewidth $Delt
Weak-coupling approaches to the pairing problem in the iron pnictide superconductors have predicted a wide variety of superconducting ground states. We argue here that this is due both to the inadequacy of certain approximations to the effective low-
Using an RPA approximation, we have calculated the strengths of the singlet and triplet pairing interactions which arise from the exchange of spin and orbital fluctuations for a 2-orbital model of the Fe-pnictide superconductors. When the system is d
Transition-metal substitution in Fe pnictides leading to superconductivity is usually interpreted in terms of carrier doping to the system. We report on a density functional calculation of the local substitute electron density and demonstrate that su
75As nuclear magnetic resonance (NMR) experiments were performed on Ba(Fe1-xMnx)2As2 (xMn = 2.5%, 5% and 12%) single crystals. The Fe layer magnetic susceptibility far from Mn atoms is probed by the75As NMR line shift and is found similar to that of