ترغب بنشر مسار تعليمي؟ اضغط هنا

Limit theorems for p-variations of solutions of SDEs driven by additive non-Gaussian stable Levy noise

324   0   0.0 ( 0 )
 نشر من قبل Ilya Pavlyukevich
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we study the asymptotic properties of the power variations of stochastic processes of the type X=Y+L, where L is an alpha-stable Levy process, and Y a perturbation which satisfies some mild Lipschitz continuity assumptions. We establish local functional limit theorems for the power variation processes of X. In case X is a solution of a stochastic differential equation driven by L, these limit theorems provide estimators of the stability index alpha. They are applicable for instance to model fitting problems for paleo-climatic temperature time series taken from the Greenland ice core.



قيم البحث

اقرأ أيضاً

We study distribution dependent stochastic differential equation driven by a continuous process, without any specification on its law, following the approach initiated in [16]. We provide several criteria for existence and uniqueness of solutions whi ch go beyond the classical globally Lipschitz setting. In particular we show well-posedness of the equation, as well as almost sure convergence of the associated particle system, for drifts satisfying either Osgood-continuity, monotonicity, local Lipschitz or Sobolev differentiability type assumptions.
We investigate the regularizing effect of certain additive continuous perturbations on SDEs with multiplicative fractional Brownian motion (fBm). Traditionally, a Lipschitz requirement on the drift and diffusion coefficients is imposed to ensure exis tence and uniqueness of the SDE. We show that suitable perturbations restore existence, uniqueness and regularity of the flow for the resulting equation, even when both the drift and the diffusion coefficients are distributional, thus extending the program of regularization by noise to the case of multiplicative SDEs. Our method relies on a combination of the non-linear Young formalism developed by Catellier and Gubinelli, and stochastic averaging estimates recently obtained by Hairer and Li.
In this paper, the discrete parameter expansion is adopted to investigate the estimation of heat kernel for Euler-Maruyama scheme of SDEs driven by {alpha}-stable noise, which implies krylovs estimate and khasminskiis estimate. As an application, the convergence rate of Euler-Maruyama scheme of a class of multidimensional SDEs with singular drift( in aid of Zvonkins transformation) is obtained.
We study distribution dependent stochastic differential equations with irregular, possibly distributional drift, driven by an additive fractional Brownian motion of Hurst parameter $Hin (0,1)$. We establish strong well-posedness under a variety of as sumptions on the drift; these include the choice $$B(cdot,mu) = fastmu(cdot) + g(cdot),quad f,gin B^alpha_{infty,infty}, quad alpha>1-1/2H,$$ thus extending the results by Catellier and Gubinelli [9] to the distribution dependent case. The proofs rely on some novel stability estimates for singular SDEs driven by fractional Brownian motion and the use of Wasserstein distances.
197 - Yan Wang 2014
In this paper, we study almost periodic solutions for semilinear stochastic differential equations driven by L{e}vy noise with exponential dichotomy property. Under suitable conditions on the coefficients, we obtain the existence and uniqueness of bo unded solutions. Furthermore, this unique bounded solution is almost periodic in distribution under slightly stronger conditions. We also give two examples to illustrate our results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا