ترغب بنشر مسار تعليمي؟ اضغط هنا

A Simple Proof of the Stability of Solitary Waves in the Fermi-Pasta-Ulam model near the KdV Limit

173   0   0.0 ( 0 )
 نشر من قبل Aaron Hoffman
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By combining results of Mizumachi on the stability of solitons for the Toda lattice with a simple rescaling and a careful control of the KdV limit we give a simple proof that small amplitude, long-wavelength solitary waves in the Fermi-Pasta-Ulam (FPU) model are linearly stable and hence by the results of Friesecke and Pego that they are also nonlinearly, asymptotically stable.



قيم البحث

اقرأ أيضاً

189 - A. Hoffman , C.E. Wayne 2008
We prove the existence of asymptotic two-soliton states in the Fermi-Pasta-Ulam model with general interaction potential. That is, we exhibit solutions whose difference in $ell^2$ from the linear superposition of two solitary waves goes to zero as time goes to infinity.
We perform a thorough investigation of the first FPUT recurrence in the $beta$-FPUT chain for both positive and negative $beta$. We show numerically that the rescaled FPUT recurrence time $T_{r}=t_{r}/(N+1)^{3}$ depends, for large $N$, only on the pa rameter $Sequiv Ebeta(N+1)$. Our numerics also reveal that for small $left|Sright|$, $T_{r}$ is linear in $S$ with positive slope for both positive and negative $beta$. For large $left|Sright|$, $T_{r}$ is proportional to $left|Sright|^{-1/2}$ for both positive and negative $beta$ but with different multiplicative constants. In the continuum limit, the $beta$-FPUT chain approaches the modified Korteweg-de Vries (mKdV) equation, which we investigate numerically to better understand the FPUT recurrences on the lattice. In the continuum, the recurrence time closely follows the $|S|^{-1/2}$ scaling and can be interpreted in terms of solitons, as in the case of the KdV equation for the $alpha$ chain. The difference in the multiplicative factors between positive and negative $beta$ arises from soliton-kink interactions which exist only in the negative $beta$ case. We complement our numerical results with analytical considerations in the nearly linear regime (small $left|Sright|$) and in the highly nonlinear regime (large $left|Sright|$). For the former, we extend previous results using a shifted-frequency perturbation theory and find a closed form for $T_{r}$ which depends only on $S$. In the latter regime, we show that $T_{r}proptoleft| Sright|^{-1/2}$ is predicted by the soliton theory in the continuum limit. We end by discussing the striking differences in the amount of energy mixing as well as the existence of the FPUT recurrences between positive and negative $beta$ and offer some remarks on the thermodynamic limit.
We study asymptotic stability of solitary wave solutions in the one-dimensional Benney-Luke equation, a formally valid approximation for describing two-way water wave propagation. For this equation, as for the full water wave problem, the classic var iational method for proving orbital stability of solitary waves fails dramatically due to the fact that the second variation of the energy-momentum functional is infinitely indefinite. We establish nonlinear stability in energy norm under the spectral stability hypothesis that the linearization admits no non-zero eigenvalues of non-negative real part. We also verify this hypothesis for waves of small energy.
We consider the long-term weakly nonlinear evolution governed by the two-dimensional nonlinear Schr{o}dinger (NLS) equation with an isotropic harmonic oscillator potential. The dynamics in this regime is dominated by resonant interactions between qua rtets of linear normal modes, accurately captured by the corresponding resonant Hamiltonian system. In the framework of this system, we identify Fermi-Pasta-Ulam-like recurrence phenomena, whereby the normal-mode spectrum passes in close proximity of the initial configuration, and two-mode states with time-independent mode amplitude spectra that translate into long-lived breathers of the original NLS equation. We comment on possible implications of these findings for nonlinear optics and matter-wave dynamics in Bose-Einstein condensates.
The effect of discrete breathers (DBs) on macroscopic properties of the Fermi-Pasta-Ulam chain with symmetric and asymmetric potentials is investigated. The total to kinetic energy ratio (related to specific heat), stress (related to thermal expansio n), and Youngs modulus are monitored during the development of modulational instability of the zone boundary mode. The instability results in the formation of chaotic DBs followed by the transition to thermal equilibrium when DBs disappear due to energy radiation in the form of small-amplitude phonons. It is found that DBs reduce the specific heat for all the considered chain parameters. They increase the thermal expansion when the potential is asymmetric and, as expected, thermal expansion is not observed in the case of symmetric potential. The Youngs modulus in the presence of DBs is smaller than in thermal equilibrium for the symmetric potential and for the potential with a small asymmetry, but it is larger than in thermal equilibrium for the potential with greater asymmetry. Our results can be useful for setting experiments on the identification of DBs in crystals by measuring their macroscopic properties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا