ﻻ يوجد ملخص باللغة العربية
We study asymptotic stability of solitary wave solutions in the one-dimensional Benney-Luke equation, a formally valid approximation for describing two-way water wave propagation. For this equation, as for the full water wave problem, the classic variational method for proving orbital stability of solitary waves fails dramatically due to the fact that the second variation of the energy-momentum functional is infinitely indefinite. We establish nonlinear stability in energy norm under the spectral stability hypothesis that the linearization admits no non-zero eigenvalues of non-negative real part. We also verify this hypothesis for waves of small energy.
We consider the interplay between nonlocal nonlinearity and randomness for two different nonlinear Schrodinger models. We show that stability of bright solitons in presence of random perturbations increases dramatically with the nonlocality-induced f
We study the interactions of two or more solitons in the Adlam-Allen model describing the evolution of a (cold) plasma of positive and negative charges, in the presence of electric and transverse magnetic fields. In order to show that the interaction
By combining results of Mizumachi on the stability of solitons for the Toda lattice with a simple rescaling and a careful control of the KdV limit we give a simple proof that small amplitude, long-wavelength solitary waves in the Fermi-Pasta-Ulam (FP
The stability and dynamical properties of the so-called resonant nonlinear Schrodinger (RNLS) equation, are considered. The RNLS is a variant of the nonlinear Schrodinger (NLS) equation with the addition of a perturbation used to describe wave propag
We consider the linearized instability of 2D irrotational solitary water waves. The maxima of energy and the travel speed of solitary waves are not obtained at the highest wave, which has a 120 degree angle at the crest. Under the assumption of non-e