ﻻ يوجد ملخص باللغة العربية
In this paper, a holographic dark energy model, dubbed Ricci dark energy, is confronted with cosmological observational data from type Ia supernovae (SN Ia), baryon acoustic oscillations (BAO) and cosmic microwave background (CMB). By using maximum likelihood method, it is found out that Ricci dark energy model is a viable candidate of dark energy model with the best fit parameters: $Omega_{m0}=0.34pm 0.04$, $alpha=0.38pm 0.03$ with $1sigma$ error. Here, $alpha$ is a dimensionless parameter related with Ricci dark energy $rho_{R}$ and Ricci scalar $R$, i.e., $rho_{R}propto alpha R$.
The braneworld model proposed by Dvali, Gabadadze and Porrati (DGP) leads to an accelerated universe without cosmological constant or other form of dark energy for the positive branch $(epsilon =+1)$. For the negative branch $(epsilon =-1)$ we have i
We consider the dynamics of a cosmological substratum of pressureless matter and holographic dark energy with a cutoff length proportional to the Ricci scale. Stability requirements for the matter perturbations are shown to single out a model with a
We present a model of holographic dark energy in which the Infrared cutoff is determined by both the Ricci and the Gauss-Bonnet invariants. Such a construction has the significant advantage that the Infrared cutoff, and consequently the holographic d
We use the Constitution supernova, the baryon acoustic oscillation, the cosmic microwave background, and the Hubble parameter data to analyze the evolution property of dark energy. We obtain different results when we fit different baryon acoustic osc
In the present paper, we investigate three scalar fields, qu field, phantom field and tachyon field, to explore the source of dark energy, using the Gaussian processes method from the background data and perturbation growth rate data. The correspondi