ﻻ يوجد ملخص باللغة العربية
The fact that the Korteweg-de-Vries equation offers a good approximation of long-wave solutions of small amplitude to the one-dimensional Gross-Pitaevskii equation was derived several years ago in the physical literature. In this paper, we provide a rigorous proof of this fact, and compute a precise estimate for the error term. Our proof relies on the integrability of both the equations. In particular, we give a relation between the invariants of the two equations, which, we hope, is of independent interest.
This work is concerned with special regularity properties of solutions to the $k$-generalized Korteweg-de Vries equation. In cite{IsazaLinaresPonce} it was established that if the initial datun $u_0in H^l((b,infty))$ for some $linmathbb Z^+$ and $bin
In this paper we consider two numerical scheme based on trapezoidal rule in time for the linearized KdV equation in one space dimension. The goal is to derive some suitable artificial boundary conditions for these two full discretization using Z-tran
We prove that the Cauchy problem for the Schrodinger-Korteweg-de Vries system is locally well-posed for the initial data belonging to the Sovolev spaces $L^2(R)times H^{-{3/4}}(R)$. The new ingredient is that we use the $bar{F}^s$ type space, introdu
In this paper we study the asymptotics of the Korteweg--de Vries (KdV) equation with steplike initial data, which leads to shock waves, in the middle region between the dispersive tail and the soliton region, as $t rightarrow infty$. In our previous
Considering the Cauchy problem for the Korteweg-de Vries-Burgers equation begin{eqnarray*} u_t+u_{xxx}+epsilon |partial_x|^{2alpha}u+(u^2)_x=0, u(0)=phi, end{eqnarray*} where $0<epsilon,alphaleq 1$ and $u$ is a real-valued function, we show that it